25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Windows Batch Scripting

This book describes and shows how to use the Microsoft-supplied command interpreter
cmd.exe and the associated commands, and how to write Windows batch scripts for the
interpreter. cmd.exe is the default interpreter on all Windows NT-based operating systems,
including Windows XP, Windows 7 and Windows 10.

Introduction

This book addresses 32-bit Windows commands applicable to modern versions of Windows based
on the Windows NT environment. It does not address commands that are specific to DOS
environments and to DOS-based operating systems, such as Windows 95, Windows 98, and
Windows Me, whose Microsoft-supplied command interpreters are in fact DOS programs, not
Win32 programs.

You can find out which version of Windows you are running using the VER command.

This book first describes using the Windows NT command interpreter, how it receives, parses, and
processes commands from users. Then it describes various commands available.

To obtain an extensive list of Windows commands and their short summaries, open the command
prompt on any Windows computer, and type help. To find out about a particular command, type
the name of the command followed by "/?".

The subject of this book is also known as "batch programming", even though "batch" refers not
only to batch files for MS DOS and Windows command interpreter. Other subject terms include

"batch file programming", "batch file scripting”, "Windows batch command", "Windows batch
file", "Windows command line", "Windows command prompt", and "Windows shell scripting".

Using the Windows command interpreter

How a command line is interpreted

The parsing of a command line into a sequence of commands is complex, and varies subtly from
command interpreter to command interpreter. There are, however, four main components:

Variable substitution
A command line is scanned for variable specifications, and any found are replaced with the
contents of those variables.
Quoting
Special characters can be quoted, to remove their special meanings.
Syntax
Command lines are developed into a sequence of commands according to a syntax.
Redirection
Redirection specifications are applied, and removed from the command line, before an
individual command in a sequence is executed.

Variable substitution

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 1/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Command lines can contain variable specifications. These comprise a % character followed by a
name, followed by a second % character unless the name is a digit in 0 ... 9 or an asterisk *.

Variable specifications are replaced with values as follows:

= %varname%, such as %PATH% or %YUSERNAME%, is replaced with the value of the named
environment variable. For example, %PATH% is replaced by the value of the PATH
environment variable.

= %nfor 0 <=n <=9, such as %0 or %9, is replaced with the value of the n-th parameter passed
to the batch file when it was invoked, subject to any subsequent modifications by the SHIFT
command. For example: %2 is replaced by the value of the second batch file parameter.

= %™ is replaced with the values of all the command-line parameters except for %0, even those
beyond index 9. SHIFT command has no impact on the result of %*. See also Command-line
arguments.

Special names

Some variable names are not visible using SET command. Rather, they are made available for
reading using the % notation. To find out about them, type "help set".

Special variable names and what they expand to:

Name Replacement Value Used
The current directory, not ending in a slash character if it is not the root

%CD% directory of the current drive

%TIME% The system time in HH:MM:SS.mm format.

%DATE% The system date in a format specific to localization.

%RANDOM% A generated pseudo-random number between 0 and 32767.
%ERRORLEVEL% The error level returned by the last executed command, or by the last

called batch script.
The version number of the Command Processor Extensions currently
used by cmd.exe.

The content of the command line used when the current cmmd.exe was
started.

%CMDEXTVERSION%

%CMDCMDLINE%

Links:

= Windows Environment Variables at ss64.com (https://ss64.com/nt/syntax-variables.html)

= Command shell overview (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/w
indows-xp/bb490954(v=technet.10)) at TechNet / Microsoft Docs

Quoting and escaping

You can prevent the special characters that control command syntax from having their special
meanings as follows, except for the percent sign (%):

= You can surround a string containing a special character by quotation marks.

= You can place caret (%), an escape character, immediately before the special characters. In a
command located after a pipe (|), you need to use three carets (**) for this to work.

The special characters that need quoting or escaping are usually <, >, |, & and *. In some
circumstances, ! and \ may need to be escaped. A newline can be escaped using caret as well.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 2/73

https://ss64.com/nt/syntax-variables.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490954(v=technet.10)

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

When you surround the string using quotation marks, they become part of the argument passed to
the command invoked. By contrast, when you use caret as an escape character, the caret does not
become part of the argument passed.

The percent sign (%) is a special case. On the command line, it does not need quoting or escaping
unless two of them are used to indicate a variable, such as %0S%. But in a batch file, you have to
use a double percent sign (%%) to yield a single percent sign (%). Enclosing the percent sign in
quotation marks or preceding it with caret does not work.

Examples

echo "Johnson & son"

= Echoes the complete string rather than splitting the command line at the & character.
Quotes are echoed as well

= echo Johnson A& son

= As above, but using caret before the special character ampersand. No quotes are echoed.
= echo Johnson & son
= Does not use an escape character and therefore, "son" is interpreted as a separate
command, usually leading to an error message that command son is not found.
= echoAMB

= Echoes A * B. Caret needs escaping as well or else it is interpreted as escaping a space.
= echo > NUL | echo A MM B
= Echoes A * B. When after a pipe, a caret used for escaping needs to be tripled to work; the
fourth caret is the one being escaped.

= f1equ1?
echo Equal &*
echo Indeed, equal

= Echoes the two strings. The caret at the end of the line escapes the newlines, leading to
the three lines being treated as if they were a single line. The space before the first caret is
necessary or else 1 gets joined with the following echo to yield 1echo.

= attrib FileM 1.txt
= Does not show attributes of file named "File 1.txt" since escaping of space does not work.
Using quotes, as in attrib "File 1.txt", works.
= echo The ratio was 47%.

= |f run from a batch, the percent sign is ignored.
= echo The ratio was 47%%.

= |f run from a batch, the percent sign is output once.
= set/a modulo=14%%3

= |f run from a batch, sets modulo variable to 2, the remainder of dividing 14 by 3. Does not
work with single %.

= for %%i in (1,2,3) do echo %%i

= |f run from a batch, outputs 1, 2 and 3.
= echo %temp%

= Qutputs the content of temp variable even if run from a batch file. Use of the percent sign in
a batch to access environment variables and passed arguments needs no escaping.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 3/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= echo "%temp”%

= Qutputs literally %temp% when run from the command line.
= echo %%temp%%

= Qutputs literally %temp% when run from a batch.
= echo //comment line | findstr \/

= Command FINDSTR uses backslash (\) for escaping. Unlike caret, this is internal to the
command and unknown to the command shell.

Links:

= Syntax : Escape Characters, Delimiters and Quotes (https://ss64.com/nt/syntax-esc.html) at
ss64

= Command shell overview (http://www.microsoft.com/resources/documentation/windows/xp/all/p
roddocs/en-us/ntcmds_shelloverview.mspx) at Microsoft

= set (https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set
1) at Microsoft

Syntax

Command lines are developed into a sequence of commands according to a syntax. In that syntax,
simple commands may be combined to form pipelines, which may in turn be combined to form
compound commands, which finally may be turned into parenthesized commands.

A simple command is just a command name, a command tail, and some redirection specifications.
An example of a simple command is dir *.txt > somefile.

A pipeline is several simple commands joined together with the "pipe" metacharacter—"|", also
known as the "vertical bar". The standard output of the simple command preceding each vertical
bar is connected to the standard input of the simple command following it, via a pipe. The
command interpreter runs all of the simple commands in the pipeline in parallel. An example of a
pipeline (comprising two simple commands) is dir *.txt | more.

A compound command is a set of pipelines separated by conjunctions. The pipelines are executed
sequentially, one after the other, and the conjunction controls whether the command interpreter
executes the next pipeline or not. An example of a compound command (comprising two pipelines,
which themselves are just simple commands) is move file.txt file.bak && dir > file.txt.

The conjunctions:

= & - An unconditional conjunction. The next pipeline is always executed after the current one
has completed executing.

= && - A positive conditional conjunction. The next pipeline is executed if the current one
completes executing with a zero exit status.

= || - A negative conditional conjunction. The next pipeline is executed if the current one
completes executing with a non-zero exit status.

A parenthesized command is a compound command enclosed in parentheses (i.e. (and)). From
the point of view of syntax, this turns a compound command into a simple command, whose
overall output can be redirected.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 4/73

https://ss64.com/nt/syntax-esc.html
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/ntcmds_shelloverview.mspx
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

For example: The command line (pushd temp & dir & popd) > somefile causes the
standard output of the entire compound command (pushd temp & dir & popd) to be
redirected to somefile.

Links:

= Conditional Execution at ss64.com (https://ss64.com/nt/syntax-conditional.html)

= Using parenthesis/brackets to group expressions at ss64.com (https://ss64.com/nt/syntax-brac
kets.html)

= Command shell overview (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/w
indows-xp/bb490954(v=technet.10)) at TechNet / Microsoft Docs

Redirection

Redirection specifications are applied, and removed from the command line, before an individual
command in a sequence is executed. Redirection specifications control where the standard input,
standard output, and standard error file handles for a simple command point. They override any
effects to those file handles that may have resulted from pipelining. (See the preceding section on
command syntax.) Redirection signs > and >> can be prefixed with 1 for the standard output
(same as no prefix) or 2 for the standard error.

The redirection specifications are:

< filename
Redirect standard input to read from the named file.
> filename
Redirect standard output to write to the named file, overwriting its previous contents.
>> filename
Redirect standard output to write to the named file, appending to the end of its previous
contents.
>&h
Redirect to handle h, where handle is any of 0—standard input, 1—standard output, 2—
standard error, and more.
<&h
Redirect from handle h.

Examples:

= dir *.txt >listing.log

= Redirects the output of the dir command to listing.log file.

dir *.txt > listing.log

= As above; the space before the file name makes no difference. However, if you type this
into the command window, auto-completion with tab after typing "> I" actually works, while
it does not work with ">listing.log".

= dir *.txt 2>NUL

= Redirects errors of the dir command to nowhere.

dir *.txt >>listing.log

= Redirects the output of the dir command to listing.log file, appending to the file. Thereby,
the content of the file before the redirected command was executed does not get lost.

dir *.txt >listing.log 2>&1

= Redirects the output of the dir command to listing.log file, along with the error messages.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 5/73

https://ss64.com/nt/syntax-conditional.html
https://ss64.com/nt/syntax-brackets.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490954(v=technet.10)

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= dir *.txt >listing.log 2>listing-errors.log
= Redirects the output of the dir command to listing.log file, and the error messages to listing-
errors.log file.
= >myfile.txt echo Hello

= The redirection can precede the command.
= echo Hello & echo World >myfile.txt

= Only the 2nd echo gets redirected.
= (echo Hello & echo World) >myfile.txt

= Qutput of both echos gets redirected.
= type con >myfile.txt
= Redirects console input (con) to the file. Thus, allows multi-line user input terminated by
user pressing Control + Z. See also #User input.
= (for %i in (1,2,3) do @echo %i) > myfile.txt

= Redirects the entire output of the loop to the file.
= for %i in (1,2,3) do @echo %i > myfile.txt

= Starts redirection anew each time the body of the loop is entered, losing the output of all
but the latest loop iteration.

Links:

= Redirection at ss64.com (https://ss64.com/nt/syntax-redirection.html)

= Using command redirection operators at Microsoft (https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-xp/bb490982%28v%3dtechnet.10%29)

How a command is executed

(...)

Batch reloading

The command interpreter reloads the content of a batch after each execution of a line or a
bracketed group.

If you start the following batch and change "echo A" to "echo B" in the batch shortly after starting
it, the output will be B.

i @echo off
| ping -n 6 127.0.0.1 >nul & REM wait
i echo A

__

What is on a single line does matter; changing "echo A" in the following batch after running it has
no impact:

| @echo off
i ping -n 6 127.0.0.1 >nul & echo A

..

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 6/73

https://ss64.com/nt/syntax-redirection.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490982%28v%3dtechnet.10%29

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Nor have after-start changes have any impact on commands bracketed with (and). Thus,
changing "echo A" after starting the following batch has no impact:

i @echo off :
! for /L %%i in (1,1,10) do (

| ping -n 2 127.0.0.1 >nul & REM wait i
! echo A i

__

i @echo off 1
Vo i
i ping -n 6 127.0.0.1 >nul & REM wait i
i echo A ;

__

Environment variables

The environment variables of the command interpreter process are inherited by the processes of
any (external) commands that it executes. A few environment variables are used by the command
interpreter itself. Changing them changes its operation.

Environment variables are affected by the SET, PATH, and PROMPT commands.
To unset a variable, set it to empty string, such as "set myvar=".

The command interpreter inherits its initial set of environment variables from the process that
created it. In the case of command interpreters invoked from desktop shortcuts this will be
Windows Explorer, for example.

Command interpreters generally have textual user interfaces, not graphical ones, and so do not
recognize the Windows message that informs applications that the environment variable template
in the Registry has been changed. Changing the environment variables in Control Panel will cause
Windows Explorer to update its own environment variables from the template in the Registry, and
thus change the environment variables that any subsequently invoked command interpreters will
inherit. However, it will not cause command interpreters that are already running to update their
environment variables from the template in the Registry.

COMSPEC
The COMSPEC environment variable contains the full pathname of the command interpreter

program file. This is just inherited from the parent process, and is thus indirectly derived from the
setting of COMSPEC in the environment variable template in the Registry.

PATH

The value of the PATH environment variable comprises a list of directory names, separated by
semi-colon characters. This is the list of directories that are searched, in order, when locating the
program file of an external command to execute.

PATHEXT

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 7173

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

The value of the PATHEXT environment variable comprises a list of filename extensions,
separated by semi-colon characters. This is the list of filename extensions that are applied, in
order, when locating the program file of an external command to execute.

An example content of PATHEXT printed by "echo %PATHEXT%":

= COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC

By adding ".PL" to the variable, you can ensure Perl programs get run from the command line even
when typed without the ".pl" extension. Thus, instead of typing "mydiff.pl a.txt b.txt", you can type
"mydiff a.txt b.txt".

Adding ".PL" to the variable in Windows Vista and later:

= setx PATHEXT %PATHEXT%;.PL

= |f you use "set" available in Windows XP, the effect will be temporary and impacting only
the current console or process.

Links:

= Windows Environment Variables at ss64 (https://ss64.com/nt/syntax-variables.html)

= Making Python scripts run on Windows without specifying “.py” extension at stackoverflow (htt
p://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-speci
fying-py-extension)

PROMPT
The PROMPT environment variable controls the text emitted when the command interpreter
displays the prompt. The command interpreter displays the prompt when prompting for a new

command line in interactive mode, or when echoing a batch file line in batch file mode.

Various special character sequences in the value of the PROMPT environment variable cause
various special effects when the prompt is displayed, as in the following table:

Characters Expansion Result

$$ $ character itself

$A & symbol AKA ampersand. A convenience, since it is difficult to place a literal & in the
value of the PROMPT environment variable using the SET command.

$B Vertical bar '|' (pipe symbol)

$C Left parenthesis '('

$D Current date

$E ESC (ASCII code 27)

$F Right parenthesis ')’

$G Greater-than symbol '>'

$H Backspace (deletes previous character)

$L Less-than symbol '<'

$M Remotg name linked to the current drive if it is a network drive; empty string
otherwise.

$N Current drive letter

$P Current drive letter and full path

$Q '=' (equals sign)

$s "' (space character)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 8/73

https://ss64.com/nt/syntax-variables.html
http://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-specifying-py-extension

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

$T Current system time

$Vv Windows version number

$_ <CR> (carriage return character, aka "enter")

$+ As many plus signs (+) as there are items on the pushd directory stack
Links:

= prompt at ss64 (https://ss64.com/nt/prompt.html)

= prompt at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/prompt)

Switches

Most Windows commands provide switches AKA options to direct their behavior.
Observations:

= Switches most often consist of a single-letter; some switches consist of a sequence of multiple
letters.

= Switches are preceded with a slash (/) rather than, as in some other operating systems, with a
minus sign (-).
= Switches are case-insensitive rather than, as in some other operating systems, case-sensitive.

= |f a command from another operating system is ported to Windows (such as grep), it usually
retains the option conventions from the original operating system, including the use of minus
sign and case-sensitivity.

Examples:

= dir /?

= Displays the help. This option is provided by many commands.
dir/b /s

= Lists all files and folders in the current folder recursively. Two switches are used: b and s.
dir /bs

= Does not work; switches cannot be accumulated behind a single slash.
findstr /ric:"id: *[0-9]*" File.txt

= Unlike many other commands, findstr allows the accumulation of switches behind a single
slash. Indeed, r, i and c are single-letter switches.

dir/b/s

= Works. In dir, removing whitespace between the command and the first switch or between
the switches does not make a difference; thus, does the same as dir /b /s.

tree/f/a

= Does not work, unlike tree /f /a. In tree, separation by whitespace is mandatory. Nor does
find/i/v work.

dir /od
= The switch letter o is further modified by a single letter specifying that ordering should be
by date. The letter d is not a switch by itself. Similar cases include dir /ad and more /4.
dir /B /S

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 9/73

https://ss64.com/nt/prompt.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/prompt

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= The switches are case-insensitive, unlike in some other operating systems.
sort /r file.txt

= Sorts the file in a reverse order.
= sort /reverse file.txt

= Sort allows the switch string to be longer than a single-letter.
= sort /reve file.txt
= Sort allows the specified switch string to be a substring of the complete long name of the
switch. Thus, does the same as the above.
= sort /reva file.txt

= Does not work, since "reva" is not a substring of "reverse".
= taskkill /im AcroRd32.exe

= Taskkill requires a multiletter switch name for /im; shortening to /i does not work.
= java -version
= Java, which originated in the environment of another operating system family, uses the
minus convention for its switches AKA options.
= grep --help

= |[f GNU grep is installed, it requires multi-letter switches to be preceded by two dashes.

Error level

Commands usually set error level at the end of their execution. In Windows NT and later, it is a
32-bit signed integer; in MS DOS, it used to be an integer from 0 to 255. Keywords: return code,
exit code, exit status.

The conventional meaning of the error level:

= 0 - success
= not O - failure
= The error levels being set are usually positive.

= |f the command does not distinguish various kinds of failure, the error level on failure is usually
1.

Uses of the error level:

» |t can be tested using && and ||; see also #Syntax.
= |t can be tested using IF.
= The value can be accessed from ERRORLEVEL variable.

Examples:

= dir >NUL && echo Success

= The part after && is executed only if the error level is zero.
= color 00 || echo Failure

= The part after || is executed only if the error level is non-zero, whether positive or negative.

= color 00 || (
echo Failure

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 10/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

)

= Multiline bracketing works as well.
echo %ERRORLEVEL%

= Displays the error level without changing it.
if %errorlevel% equ 0 echo The error level is zero, meaning success.
if %errorlevel% neq 0 echo The error level is non-zero, meaning failure.
if errorlevel 1 echo The error level is >= 1, meaning failure via positive error level.

= Does not cover failure via negative error level. Note the ">=" part: this is not the same as if
%errorlevel% equ 1.
exit /b 1

= Returns a batch file, setting the error level to 1.
cmd /c "exit /b 10"

= |n the middle of a batch file or on the command line, sets the error level to 10.
(cmd /c "exit /b 0" && Echo Success) & (cmd /c "exit /b -1" || Echo Failure)

= As above, showing the error level is indeed affected.
(cmd /c "exit /b 0" & cmd /c "exit /b 1") || Echo Failure

= The error level of a chain created by & is the error level of the last command of the chain.
cmd /c "exit /b -1" & if not errorlevel 1 echo Would-be success
= The "if not errorlevel 1" test, which might appear to test for success, passes on negative
numbers: it tests on "not error level >= 1", which is "error level <= 0".
set myerrorlevel=%errorlevel%

= Remembers the error level for later.
set errorlevel=0
= To be avoided: overshadows the built-in errorlevel variable. Ensures that subsequent
accesses via %ERRORLEVEL% return 0 rather than the actual error level.
cmd /c "exit /b 0"
if 1 equ 1 (cmd /c "exit /b 1" & echo %errorlevel%)

= Displays 0, since %errorlevel% gets expanded before cmd /c "exit /b 1" gets executed.

Links:

= Error level at ss64 (https://ss64.com/nt/errorlevel.html)

String processing

Getting a substring of a non-empty variable:

set a=abcdefgh

i echo %a:~0,1% & rem from index 6, length 1; result: a

i echo %a:~1,1% & rem from index 1, length 1; result: b

i echo %a:~0,2% & rem from index @, length 2; result: ab

E echo %a:~1,2% & rem from index 1, length 2; result: bc

i echo %a:~1% & rem from index 1 to the end; result: bcdefgh

i echo %a:~-1% & rem from index -1 (last char) to the end; result: h

i echo %a:~-2% & rem from index -2 (next-to-last) to the end; result: gh
i echo %a:~0,-2% & rem from index © to index -2, excl.; result: abcdef

https://en.wikibooks.org/wiki/Windows_Batch_Scripting

11/73

https://ss64.com/nt/errorlevel.html

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

i echo %a:~0,-1% & rem from index © to index -1, excl.; result: abcdefg
1 echo %a:~1,-1% & rem from index 1 to index -1, excl.; result: bcdefg

Testing substring containment:

= if not "%a:bc=%"=="%a%" echo yes

= [f variable a contains "bc" as a substring, echo "yes".
= This test is a trick that uses string replacement, discussed below.
= This test does not work if the variable contains a quotation mark.

Testing for "starts with":

if %a:~0,1%==a echo yes & rem If variable a starts with "a", echo "yes".
if %a:~0,2%==ab echo yes & rem If variable a starts with "ab", echo "yes".

set a=abcd & echo %a:c=% & rem replace c with nothing; result: abd

set a=abcd & echo %a:c=e% & rem replace c with e; result: abed;

set a=abcd & echo %a:*c=% & rem replace all up to c with nothing; result: d
rem Above, the asterisk (*) only works at the beginning of the sought pattern.

See also the help for SET command: set /?.

nmn

Splitting a string by any of " ", "," and ";": ["space", "comma" and "semicolon":]

set myvar=a b,c;d
for %%a in (%myvar%) do echo %%a

@echo off

set myvar=a b;c;d

set strippedvar=%myvar%

:repeat

for /f "delims=;" %%a in ("%strippedvar%") do echo %%a

set prestrippedvar=%strippedvar

set strippedvar=%strippedvar:*;=%

if not "%prestrippedvar:;=%"=="%prestrippedvar%" goto :repeat

Limitations:
= The above string processing does not work with parameter variables (%1, %2, ...).
Links:

= Variables: extract part of a variable (substring) at ss64 (https://ss64.com/nt/syntax-substring.ht
ml)

= Variable Edit/Replace at ss64 (https://ss64.com/nt/syntax-replace.html)

Command-line arguments

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 12/73

https://ss64.com/nt/syntax-substring.html
https://ss64.com/nt/syntax-replace.html

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

The command-line arguments AKA command-line parameters passed to a batch script are
accessible as %1, %2, ..., %9. There can be more than nine arguments; to access them, see how to
loop over all of them below.

The syntax %0 does not refer to a command-line argument but rather to the name of the batch file.

Testing for whether the first command-line argument has been provided:

if not -%1-==-- echo Argument one provided
if -%1-==-- echo Argument one not provided & exit /b

A robust looping over all command-line arguments using SHIFT (for each command-line
argument, ...):

rargactionstart

if -%1-==-- goto argactionend
echo %1 & REM Or do any other thing with the argument
shift

goto argactionstart
rargactionend

call :argactionstart %*
echo Arg one: %1 & REM %1, %2, etc. are unmodified in this Llocation
exit /b

1
i
1
1
1
i
i
rargactionstart !
if -%1-==-- goto argactionend
1
i
i
1
i
i
i

echo %1 & REM Or do any other thing with the argument
shift

goto argactionstart
:argactionend
exit /b

setlocal EnableDelayedExpansion E
REM Prevent affecting possible callers of the batch i
REM Without delayed expansion, !arg%argno%! used below won't work. i
set argcount=0 H
rargactionstart E
if -%1-==-- goto argactionend
set /a argcount+=1 H
set argkargcount%=%1 E
shift i
goto argactionstart 1
rargactionend i
1
1
1
1
1
1
1
1
1
1
1
1

set argno=0

:loopstart

set /a argno+=1

if %argno% gtr %argcount% goto loopend

echo larg¥%argno%! & REM Or do any other thing with the argument
goto loopstart

:loopend

for %%i in (%*) do (i
echo %%i ;

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 13/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

This looks elegant but is non-robust, maltreating arguments containing wildcards (*, ?). In
particular, the above for command replaces arguments that contain wildcards (*, ?) with file
names that match them, or drops them if no files match. Nonetheless, the above loop works as
expected as long as the passed arguments do not contain wildcards.

Finding the number of command-line arguments, in a non-robust way:

--

set argcount=0
for %%i in (%*) do set /a argcount+=1

Again, this does not work with arguments containing wildcards.

The maximum possible number of arguments is greater than 4000, as empirically determined on a
Windows Vista machine. The number can differ on Windows XP and Windows 7.

In passing arguments to a batch script, characters used for argument separation are the following
ones:

= space
= comma

= semicolon

= equal sign

= tab character

Thus, the following lines pass the same four arguments:

= testbatabcd
= test.bat a,b,c,d
= test.bata, b, c,d
= test.bat a;b;c;d
= test.bat a=b=c=d
= test.bat a b,c;,;=d

Yes, even the line with "a b,c;,;=d" passes four arguments, since a sequence of separating
characters is considered a single separator.

To have a space, comma or semicolon in the argument value, you can pass the value enclosed in
quotation marks. However, the quotation marks become part of the argument value. To get rid of
the enclosing quotation marks when referring to the argument in the script, you can use %~
<number> described in #Percent tilde.

When passing arguments to an invoked command rather than a batch script, you usually need to
separate the command from the first argument using a space. However, for internal commands,
that separation is not necessary if the first character after the command name is one of a couple of
symbols, including .\/, and more:

= echo.

= Qutputs a newline.
= free.

= Fails: "tree." not found. tree is an external command.
= dir..

= Lists the content of the parent directory.
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 14/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= cd..

= Changes the current directory to the parent one.
= cd\

= Changes the current directory to the root one.
= start.

= Opens Windows Explorer from the current directory.
= dir/b/s

= Lists directory content recursively, showing full paths.

Links:

= Parameters / Arguments at ss64 (https://ss64.com/nt/syntax-args.html)
= Escape Characters, Delimiters and Quotes at ss64 (https://ss64.com/nt/syntax-esc.html)

= Using batch parameters at Microsoft (http://www.microsoft.com/resources/documentation/wind
ows/xp/all/proddocs/en-us/percent.mspx)

Wildcards

Many commands accept file name wildcards--characters that do not stand for themselves and
enable matching of a group of filenames.

Wildcards:

= * (asterisk): any sequence of characters

= ? (question mark): a single character other than a period (".") or, if part of a sequence of
question marks at the end of a maximum period-free part of a file name, possibly zero number
of characters; see examples for clarification

Examples:

n dir *.txt

= Matches Myfile.txt, Plan.txt and any other file with the .txt extension.
dir *txt

= The period does not need to be included. However, this will also match files named without
the period convention, such as myfiletxt.

ren *.cxx *.cpp

= Renames all files with .cxx extension to have .cpp extension.
dir a?b.txt

= Matches files aab.txt, abb.txt, aOb.txt, etc.

= Does not match ab.txt, since a question mark followed by a character other than a question
mark or period cannot match zero characters.

= Does not match a.b.txt, since a question mark cannot match a period.
dir ?7?7?.txt

= Matches .ixt, a.txt, aa.txt, and aaa.txt, among others, since each question mark in the
sequence followed by a period can match zero number of characters.

» dir a???.b???.txt???

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 15/73

https://ss64.com/nt/syntax-args.html
https://ss64.com/nt/syntax-esc.html
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/percent.mspx

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Matches a.b.txt, among others. While the last question mark sequence is not followed by a
period, it is still a sequence at the end of a maximum period-free part of a file name.

= Matches the same files as *.txt, since each file also has a short file name that has no more
than 8 characters before .txt.

Quirk with short file names: the wildcard matching is performed both on long file names and the
usually hidden short 8 chars + period + 3 chars file names. This can lead to bad surprises.

Unlike shells of some other operating systems, the cmd.exe shell does not perform wildcard
expansion (replacement of the pattern containing wildcards with the list of file names matching
the pattern) on its own. It is the responsibility of each program to treat wildcards as such. This
enables such things as "ren *.txt *.bat", since the ren command actually sees the * wildcard rather
than a list of files matching the wildcard. Thus, "echo *.txt" does not display files in the current
folder matching the pattern but rather literally displays "*.txt". Another consequence is that you
can write "findstr a.*txt" without fearing that the "a.*txt" part gets replaced with the names of
some files in the current folder. Furthermore, recursive "findstr /s pattern *.txt" is possible, while
in some other operating systems, the "*.txt" part would get replaced with the file names found in
the current folder, disregarding nested folders.

Commands accepting wildcards include ATTRIB, COPY, DIR, FINDSTR, FOR, REN, etc.

Links:

= Wildcards at ss64 (https://ss64.com/nt/syntax-wildcards.html)
= Using wildcard characters at Microsoft (http://www.microsoft.com/resources/documentation/win

dows/xp/all/proddocs/en-us/find_c_search_wildcard.mspx)
User input

You can get input from the user using the following methods:

= SET /P command
= CHOICE command

= Using "type con >myfile.txt", for which the multi-line user input is terminated by user pressing
Control + Z.

Percent tilde

When a command-line argument contains a file name, special syntax can be used to get various
information about the file.

The following syntaxes expand to various information about the file passed as %1:

Syntax Expansion Result Example
%~1 %1 with no enclosing quotation marks Not provided
%~f1 Full path with a drive letter C:\Windows\System32\notepad.exe
%~d1 Drive letter C:
%~p1 Drive-less path with the trailing backslash \Windows\System32\
%~n1 For a file, the file name without path and notepad
extension

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 16/73

https://ss64.com/nt/syntax-wildcards.html
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/find_c_search_wildcard.mspx

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

For a folder, the folder name
%~x1 File name extension including the period .exe
%~s1 Modify of f, n and x to use short name Not provided
%~a1l File attributes --a------
%~t1 Date and time of last modification of the file 02.11.2006 11:45
Y%~z1 File size 151040
%~pn1 A combination of p and n \Windows\System32\notepad
%~dpnx1 |A combination of several letters C:\Windows\System32\notepad.exe

The full path of the first match found in the
%~$PATH:1|folders present in the PATH variable, or an
empty string in no match.

%~n applied to %0:

o/ _ .
%~n0 The extensionless name of the batch tildetest

%~nx applied to %0:

o/ _)
%o~Nx0 The name of the batch tildetest.bat

%~f applied to %0:

0o/ ~ .
%o~d0 The drive letter of the batch C:

%~dp applied to %0:

0/ .
%~dp0 116 folder of the batch with trailing backslash |- D Sers\oe Hoel

The same syntax applies to single-letter variables created by FOR command, such as "%%i".
To learn about this subject from the command line, type "call /?" or "for /?".
Links:

= Parameters / Arguments at ss64 (https://ss64.com/nt/syntax-args.html)

= Using batch parameters at Microsoft (http://www.microsoft.com/resources/documentation/wind
ows/xp/all/proddocs/en-us/percent.mspx)

= for at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/for)

Functions

Functions AKA subprograms can be emulated using CALL, labels, SETLOCAL and ENDLOCAL.

An example of a function that determines arithmetic power:

--

i @echo off

i call :power 2 4

i echo %result%

i rem Prints 16, determined as 2 * 2 * 2 * 2
i goto :eof

i rem __Function power
i rem Arguments: %1 and %2
i ipower

! setlocal

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 17173

https://ss64.com/nt/syntax-args.html
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/percent.mspx
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/for

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

set counter=%2
set interim_product=%1

if %counter% gtr 1 (
set /a interim_product=interim_product * %1
set /a counter=counter - 1
goto :

)
endlocal & set result=%interim_product%
goto :

__

While the goto :eof at the end of the function is not really needed, it has to be there in the general
case in which there is more than one function.

The variable into which the result should be stored can be specified on the calling line as follows:

| @echo off

v ocall : result=world
i echo %result%

\ exit /b

! set %l=Hello %2
! REM Set %1 to set the returning value
exit /b

In the example above, exit /b is used instead of goto :eof to the same effect.

Also, remember that the equal sign is a way to separate parameters. Thus, the following items
achieve the same:

= call :sayhello result=world
= call :sayhello result world
= call :sayhello result,world
= call :sayhello result;world

(See Command-line arguments as a reminder)
Links:

= Functions at ss64 (https://ss64.com/nt/syntax-functions.html)

Calculation

Batch scripts can do simple 32-bit integer arithmetic and bitwise manipulation using SET /a
command. The largest supported integer is 2147483647 = 2 ™ 31 - 1. The smallest supported
integer is -2147483648 = - (2 * 31), assignable with the trick of set /a num=-2147483647-1. The
syntax is reminiscent of the C language.

Arithmetic operators include *, /, % (modulo), +, -. In a batch, modulo has to be entered as "%%".

Bitwise operators interpret the number as a sequence of 32 binary digits. These are ~
(complement), & (and), | (or), * (xor), << (left shift), >> (right shift).

A logical operator of negation is !: it turns zero into one and non-zero into zero.

A combination operator is ,: it allows more calculations in one set command.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 18/73

https://ss64.com/nt/syntax-functions.html

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Combined assignment operators are modeled on "+=", which, in "a+=b", means "a=a+b". Thus,
"a-=b" means "a=a-b". Similarly for *=, /=, %=, &=, "=, |=, <<=, and >>=.

The precedence order of supported operators, is as follows:

()
| % + -
<< >>

&

A

*= [= Ofp= += .= &= A= |= <<= >>=

©® NGk ON -~

Literals can be entered as decimal (1234), hexadecimal (oxffff, leading 0x), and octal (0777,
leading 0).

The internal bit representation of negative numbers is two's complement. This provides a
connection between arithmetic operations and bit operations. For instance, -2147483648 is
represented as 0x80000000, and therefore set /a num=~(-2147483647-1) yields 2147483647,
which equals 0x7FFFFFFF (type set /a num=0x7FFFFFFF to check).

As some of the operators have special meaning for the command interpreter, an expression using
them needs to be enclosed in quotation marks, such as this:

= set/a num="255"27"
= set/a "num=255727"

= Alternative placement of quotation marks.
= set/a num=255"127

= Escape ” using * instead of quotation marks.

Examples:

set n1=40 & set n2=25

set /a n3=%n1%+%n2%

= Uses the standard percent notation for variable expansion.
= set n1=40 & set n2=25

set /a n3=n1+n2
= Avoids the percent notation around variable names as unneeded for /a.
= set/a num="255*127"

= Encloses "A" in quotation marks to prevent its special meaning for the command interpreter.
= set/an1=(10+5)/5

= The spaces around = do not matter with /a. However, getting used to it lends itself to
writing "set var = value" without /a, which sets the value of "var " rather than "var".

= if 1==1 (set /a n1=(2+4)*5)
= Does not work: the arithmetic brackets within grouping brackets cause trouble.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 19/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= if 1==1 (set /a n1="(2+4")*5)
= Escaping the arithmetic brackets with caret (*) works, as does enclosing "n1=2+(4*5)" in
qguotation marks.
= set/a n1=2+3,n2=4*7

= Performs two calculations.
= set/an1=n2=2

= Has the same effect as n1=2,n2=2.
= set n1=40 & set n2=25 & set /a n3=n1+n2

= Works as expected.
» set/an1=2,n2=3,n3=n1+n2

= Works as expected.
= set N1=40 & set n2=25 & set /a n3=%n1%+%n2%
= Does not work unless n1 and n2 were set previously. The variable specifications "%n1%"

and "%n2"% get expanded before the first set command is executed. Dropping percent
notation makes it work.

= set/an1=2,n2=3,n3=%n1%+%n2%
= Does not work unless n1 and n2 were set previously, for the reason stated in the previous
example.
= set /a n1=0xffff

= Sets n1 using hexadecimal notation.
= set/an1=0777

= Sets n1 using octal notation.
= set/a n1=%random%

= A pseudo-random number from 0 to 32767 = 2*15-1.
» set/a n1="%random%>>10"

= A pseudo-random number from 0 to 31 = 2*5-1. The shift right operator drops 10 out of 15
bits, keeping 5 bits.

= set /a n1=%random% %50

= A pseudo-random number from 0 to 49. Uses the % modulo operator. In a batch, %% is
needed for modulo: set /a n1=%random%%%50. Because of this particular use of the
modulo, the result is not perfectly uniform; it is uniform if the 2nd modulo operand--above
50--equals to a power of 2, e.g. 256 = 2"8.

= set/a n1="(%random%<<15)+%random%"
= A pseudo-random number from 0 to 1073741823 = 2"30 - 1. Combines the two 15-bit

random numbers produced by %random% alone to produce a single 30-bit random
number..

= set/a n1="((%random%<<15)+%random%y)%1000000"

= As above, but again using modulo, this time to achieve the range 0 to 999999.

An example calculation that prints prime numbers:

i @echo off
! setlocal
i set n=1

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 20/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

: .

' set /a n=n+1

1

' set cand_divisor=1

i set /a cand_divisor=cand_divisor+1l

E set /a cand_divisor_squared=cand_divisor*cand_divisor

i if %cand_divisor_squared% gtr %n% echo Prime %n% & goto :

i set /a modulo=n%%cand_divisor

i if %modulo% equ © goto : & REM Not a prime
i goto :

__

= set at ss64.com (https://ss64.com/nt/set.html)

= set at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/set_1)

= Random Numbers at ss64.com (https://ss64.com/nt/syntax-random.html)

Finding files
Files can be found using #DIR, #FOR, #FINDSTR, #FORFILES, and # WHERE.

Examples:

= dir /b /s *base*.doc*

= Qutputs all files in the current folder and its subfolders such that the file name before the
extension contains the word "base" and whose extension starts with "doc", which includes
"doc" and "docx". The files are output with full paths, one file per line.

dir /b /s *.txt | findstr /i pers.*doc

= Combines the result of outputting files including their complete paths with the findstr
filtering command supporting limited regular expressions, yielding a versatile and powerful
combination for finding files by names and the names of their directories.

for Ir %i in (*) do @if %~zi geq 1000000 echo %~zi %i

= For each file in the current folder and its subfolders that has the size greater than or equal
to 1,000,000 bytes, outputs the file size in bytes and the full path of the file. For the syntax
in %~zi, see #Percent tilde.

forfiles /s /d 06/10/2015 /c "cmd /c echo @fdate @path"

= For each file in the current folder and its subfolders modified on 10 June 2015 or later,
outputs the file modification date and full file path. The date format after /d is locale
specific. Thus, allows to find most recently modified files.

(for Ir %i in (*) do @echo %~ti :: %i) | findstr 2015.*::

= Searching the current folder recursively, outputs files whose last modification date is in year
2015. Places the modification date and time, followed by a double colon, before the file
name. Works as long as the used version of Windows and locale displays dates in a format
that contains four-digit years. The double colon is used to make sure the findstr command
is matching the date and not the file name.

for /r %i in (*) do @echo %-~ti | findstr 2015 >NUL && echo %i

= As above, outputs files changed in 2015. Unlike the above, only outputs the files, not the
modification dates.

findstr /i /s /m cat.*mat *.txt

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 21/73

https://ss64.com/nt/set.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://ss64.com/nt/syntax-random.html

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Finds files by their content. Performs a full text search for regular expression cat.*mat in
files with names ending in .txt, and outputs the files names. The /m switch ensures only the
file names are output.

= where *.bat

= Qutputs all .bat files in the current directory and in the directories that are in PATH.

Keyboard shortcuts

When using Windows command line from the standard console that appears after typing cmd.exe
after pressing Windows + R, you can use multiple keyboard shortcuts, including function keys:

= Tab: Completes the relevant part of the typed string from file names or folder names in the
current folder. The relevant part is usually the last space-free part, but use of quotation marks
changes that. Generally considers both files and folders for completion, but cd command only
considers folders.

= Up and down arrow keys: Enters commands from the command history, one at a time.
= Escape: Erases the current command line being typed.

= F1: Types the characters from the single previously entered command from the command
history, one character at a time. Each subsequent press of F1 enters one more character.

= F2: Asks you to type a character, and enters the shortest prefix of the previous command from
the command history that does not include the typed character. Thus, if the previous command
was echo Hello world and you typed o, enters ech.

= F3: Enters the single previous command from the command history. Repeated pressing has no
further effect.

= F4: Asks you to type a character, and erases the part of the currently typed string that starts at
the current cursor location, continues to the right, and ends with the character you entered
excluding that character. Thus, if you type echo Hello world, place the cursor at H using left
arrow key, press F4 and then w, you get echo world. If you press F4 and then Enter, erases the
text from the cursor to the end of the line.

= F5: Enters previous commands from the command history, one at a time.
= F6: Enters Control+Z character.

= F7: Opens a character-based popup window with the command history, and lets you use arrow
key and enter to select a command. After you press enter in the popup, the command is
immediately executed.

= F8: Given an already typed string, shows items from the command history that have that string
as a prefix, one at a time.

= F9: Lets you enter the number of the command from the command history, and then executes
the command.

= Alt + F7: Erases the command history.

The above are also known as command prompt keyboard shortcuts.
The availability of the above shortcuts does not seem to depend on running DOSKEY.

Links:

= Windows Keyboard shortcuts at ss64.com (https://ss64.com/nt/syntax-keyboard.html)

= doskey at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/doskey)

Paths

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 2273

https://ss64.com/nt/syntax-keyboard.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

File and directory paths follow certain conventions. These include the possible use of a drive letter
followed by a colon (:), the use of backslash (\) as the path separator, and the distinction between
relative and absolute paths.

Forward slash (/) often works when used instead of (\) but not always; it is normally used to mark
switches (options). Using forward slash can lead to various obscure behaviors, and is best avoided.

Special device names include NUL, CON, PRN, AUX, COM1, ..., COMo, LPT1, ..., LPT9; these can
be redirected to.

Examples:

= attrib C:\Windows\System32\notepad.exe
= Succeeds if the file exists, as it should. This is an absolute path with a drive letter. It is also
known as a fully qualified path.
= attrib \Windows\System32\notepad.exe
» Succeeds if the current drive is C:, and if the file exists, as it should. This is an absolute
path without a drive letter.
= cd/d C:\Windows & attrib System32\notepad.exe

= Succeeds if the file exists. The path given to attrib is a relative path.
= cd /d C:\Windows\System32 & attrib C:notepad.exe
= Succeeds if the file exists. The path given to attrib is a relative one despite containing a

drive letter: there would have to be C:\notepad.exe with a backslash for that to be an
absolute path.

= cd /d C:\Windows & attrib .\System32\notepad.exe

= Succeeds if the file exists. A single period denotes the current folder.
= attrib .

= A single period denotes the current folder.
= cd /d C:\Windows & attrib .\System32\\\notepad.exe

= Succeeds if the file exists. Piling of backslashes has no impact beyond the first backslash.
= cd/d C:\Windows & attrib .\System32

= Succeeds if the folder exists.
= cd /d C:\Windows & attrib .\System32\

= Fails. Folders are usually denoted without the final backslash.
= cd C:\Windows\System32\

= Succeeds, whyever.
= cd ..

= A double period denotes the parent folder.
= attrib C:\Windows\System32\..\.\Windows\System32
= A double period can be used in the middle of the path to navigate to the parent folder, even
multiple times.
= attrib \\myserver\myvolume

= A network UNC path starts with double backslash and no drive letter.
cd \\myserver\myvolume

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 23/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= Does not work; changing to a server folder in this direct manner does not work.
= pushd \\myserver\folder

= Automatically creates a drive for the folder and changes to it. After you use #POPD, the
drive gets unassigned again.

= attrib C:/Windows/System32/notepad.exe

= Succeeds on multiple versions of cmd.exe. Uses forward slashes.

Links:

= Long filenames, NTFS and legal flename characters at ss64.com (https://ss64.com/nt/syntax-fi
lenames.html)

= Naming Files, Paths, and Namespaces at Microsoft (https://msdn.microsoft.com/en-us/library/
windows/desktop/aa365247%28v=vs.85%29.aspx)

= W:Path (computing)#MS-DOS/Microsoft Windows style, wikipedia.org

= Why does the cmd.exe shell on Windows fail with paths using a forward-slash ('/) path
separator? (http://stackoverflow.com/questions/10523708/why-does-the-cmd-exe-shell-on-win
dows-fail-with-paths-using-a-forward-slash), stackoverflow.com

Arrays

Arrays can be emulated in the delayed expansion mode using the combination of % and ! to
indicate variables. There, %1% is the value of variable i with the immediate expansion while !i! is
the value of variable i in the delayed expansion.

--

i @echo off

i setlocal EnableDelayedExpansion
i for /1 %%i in (1, 1, 10) do (
set array_%%i=!random!

L)

! for /1 %%i in (1, 1, 10) do (
echo larray_ %%i!

L)

: For each item 1in the array, not knowing the Llength
ioset i=1

E if not defined array_%i% goto

i set array_%i%=!array_%i%!_dummy_suffix
1 echo A%i%: larray_%i%!

E set /a i+=1

i goto

__

= Arrays, linked lists and other data structures in cmd.exe (batch) script (http://stackoverflow.co
m/questions/10166386/arrays-linked-lists-and-other-data-structures-in-cmd-exe-batch-script/10
167990#10167990), stackoverflow.com

Perl one-liners

Some tasks can be conveniently achieved with Perl one-liners. Perl is a scripting language
originating in the environment of another operating system. Since many Windows computing
environments have Perl installed, Perl one-liners are a natural and compact extension of Windows
batch scripting.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 24/73

https://ss64.com/nt/syntax-filenames.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/Path_(computing)#MS-DOS/Microsoft_Windows_style
http://stackoverflow.com/questions/10523708/why-does-the-cmd-exe-shell-on-windows-fail-with-paths-using-a-forward-slash
http://stackoverflow.com/questions/10166386/arrays-linked-lists-and-other-data-structures-in-cmd-exe-batch-script/10167990#10167990

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Examples:

= echo "abcbbc"| perl -pe "s/a.*?c/ac/"
= Lets Perl act as sed, the utility that supports textual replacements specified using regular
expressions.
= echo a b| perl -lane "print $F[1]"
= Lets Perl act as cut command, displaying the 2nd field or column of the line, in this case b.
Use $F[2] to display 3rd field; indexing starts at zero. Native solution: FOR /f.
= perl -ne "print if A\Ax22hello\x22/" file.txt
= Acts as grep or FINDSTR, outputting the lines in file.txt that match the regular expression
after if. Uses the powerful Perl regular expressions, more powerful than those of FINDSTR.
= perl -ne "$. <= 10 and print" MyFile.txt

= |ets Perl act as head -10 command, outputting the first 10 lines of the file.
= perl -e "sleep 5"

= Waits for 5 seconds.
= for /f %i in ('perl -MPOSIX -le "print strftime '%Y-%m-%d', localtime™) do @set isodate=%i

= Gets current date in the ISO format into isodate variable.
= perl -MWin32::Clipboard -e "print Win32::Clipboard->Get()"
= Qutputs the text content of the clipboard. When stored to getclip.bat, yields a handy getclip
command to complement CLIP command.
= perl -MText::Diff -e "print diff 'File1.txt", 'File2.txt™
= Outputs differences between two files in a format similar to diff command known from other
operating systems, including context lines, lines starting with + and lines starting with -.
= perl -MWin32::Sound -e "Win32::Sound::Play(‘C:\WINDOWS\Media\notify.wav');"

= Plays notification sound in notify.wav without showing any window.

On the web, Perl one-liners are often posted in the command-line conventions of another
operating system, including the use of apostrophe (') to surround the arguments instead of
Windows quotation marks. These need to be tweaked for Windows.

Links:

= Perl One Liners at novosial.org (http://novosial.org/perl/one-liner/)

= Why doesn't my Perl one-liner work on Windows? at stackoverflow.com (http://stackoverflow.c
om/questions/660624/why-doesnt-my-perl-one-liner-work-on-windows)

= W:One-liner program#Perl

Unix commands

Windows cmd.exe command interpreter can use commands from Unix-like operating systems,
provided they are installed. Example commands include grep, sed, awk, we, head and tail. The
commands are available from GNU project, and their Windows ports exist. You can learn more
about the commands in Guide to Unix Wikibook. Beware that batch programs that come to depend
on these commands are not guaranteed to work on other Windows machines.

Freely licensed Windows versions of GNU commands can be obtained from the following projects:

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 25/73

http://novosial.org/perl/one-liner/
http://stackoverflow.com/questions/660624/why-doesnt-my-perl-one-liner-work-on-windows
https://en.wikipedia.org/wiki/One-liner_program#Perl
https://en.wikibooks.org/wiki/Guide_to_Unix

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= GnuWin32 (http://gnuwin32.sourceforge.net/), sourceforge.net

= ezwinports (https://sourceforge.net/projects/ezwinports/files/), sourceforge.net: has some
fresher ports than GnuWin32

An alternative way of running GNU commands for Windows 10 is Windows Subsystem for Linux.

Limitations

There is no touch command familiar from other operating systems. The touch command would
modify the last-modification timestamp of a file without changing its content.

One workaround, with unclear reliability and applicability across various Windows versions, is

this:

= copy /b file.txt+,,

Links:

= Windows recursive touch command (http://superuser.com/questions/251470/windows-recursiv
e-touch-command/251507#251507) at superuser.com

= Windows version of the Unix touch command (http://stackoverflow.com/questions/51435/windo
ws-version-of-the-unix-touch-command) at stackoverflow.com

Built-in commands

These commands are all built in to the command interpreter itself, and cannot be changed.
Sometimes this is because they require access to internal command interpreter data structures, or
modify properties of the command interpreter process itself.

Overview

Command Description
ASSOC Associates an extension with a file type (FTYPE).
BREAK Sets or clears extended CTRL+C checking.
CALL Calls one batch program from another.
CD, CHDIR Displays or sets the current directory.
CHCP Displays or sets the active code page number.
CLS Clears the screen.
COLOR Sets the console foreground and background colors.
COPY Copies files.
DATE Displays and sets the system date.
DEL, ERASE |Deletes one or more files.
DIR Displays a list of files and subdirectories in a directory.
ECHO Displays messages, or turns command echoing on or off.
ELSE Performs conditional processing in batch programs when "IF" is not true.
ENDLOCAL Ends localization of environment changes in a batch file.
EXIT Quits the CMD.EXE program (command interpreter).
FOR Runs a specified command for each file in a set of files.
FTYPE Sets the file type command.
GOTO Goes to a label.
IF Performs conditional processing in batch programs.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting

26/73

http://gnuwin32.sourceforge.net/
https://sourceforge.net/projects/ezwinports/files/
http://superuser.com/questions/251470/windows-recursive-touch-command/251507#251507
http://stackoverflow.com/questions/51435/windows-version-of-the-unix-touch-command

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

MD, MKDIR Creates a directory.

MOVE Moves a file to a new location

PATH Sets or modifies the PATH environment

PAUSE Causes the command session to pause for user input.

POPD Changes to the drive and directory popped from the directory stack
PROMPT Sets or modifies the string displayed when waiting for input.
PUSHD Pushes the current directory onto the stack, and changes to the new directory.
RD / RMDIR Removes the directory.

REM A comment command. Unlike double-colon (::), the command can be executed.
REN / RENAME |Renames a file or directory

SET Sets or displays shell environment variables

SETLOCAL Creates a child-environment for the batch file.

SHIFT Moves the batch parameters forward.

START Starts a program with various options.

TIME Displays or sets the system clock

TITLE Changes the window title

TYPE Prints the content of a file to the console.

VER Shows the command processor, operating system versions.
VERIFY Verifies that file copy has been done correctly.

VOL Shows the label of the current volume.

ASSOC

Associates an extension with a file type (FTYPE), displays existing associations, or deletes an
association. See also FTYPE.

Examples:

= asSsoC

= Lists all associations, in the format "<file extension>=<file type>", as, for example,
".pl=Perl" or ".xIs=Excel.Sheet.8".

= assoc | find ".doc"

= Lists all associations containing ".doc" substring.

Links:

= assoc at ss64.com (https://ss64.com/nt/assoc.html)

= assoc at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/assoc)

= Making Python scripts run on Windows without specifying “.py” extension at stackoverflow (htt
p://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-speci
fying-py-extension)

BREAK

In Windows versions based on Windows NT, does nothing; kept for compatibility with MS DOS.
Examples:

= break > empty.txt

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 27173

https://ss64.com/nt/assoc.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/assoc
http://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-specifying-py-extension

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Creates an empty file or to clears the content of an existing file, taking advantage of the
fact that break does nothing and has no output. Shorter to type than "type nul > empty.txt".

Links:

break at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/break_1)

CALL

Calls one batch program from another, calls a subprogram within a single batch program, or, as an
undocumented behavior, starts a program. In particular, suspends the execution of the caller,
starts executing the callee, and resumes the execution of the caller if and when the callee finishes
execution.

For calling a subprogram, see Functions section.

Beware that calling a batch program from a batch without using the call keyword results in the
execution never returning to the caller once the callee finishes.

The callee inherits environment variables of the caller, and unless the callee prevents that via
SETLOCAL, changes made by the callee to environment variables become visible to the caller once
it resumes execution.

Examples:

mybatch.bat

= |f used in a batch, transfers control to mybatch.bat and never resumes the execution of the
caller.

call mybatch.bat

call mybatch

call mybatch.bat arg1 "arg 2"
call :mylabel

call :mylabel arg1 "arg 2"
cmd /c mybatch.bat

= Similar to call, but resumes execution even when there are errors. Furthermore, any
changes the callee makes to environment variables are not propagated to the caller.
call notepad.exe

= Launches Notepad, or in general, any other executable. This is apparently not the intended
usage of call, and is not officially documented.

See also Functions, CMD amd START.

Links:

call at ss64.com (https://ss64.com/nt/call.html)

call at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/call)

CALL command vs. START with /WAIT option (https://stackoverflow.com/questions/13257571/
call-command-vs-start-with-wait-option), stackoverflow.com

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 28/73

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/break_1
https://ss64.com/nt/call.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/call
https://stackoverflow.com/questions/13257571/call-command-vs-start-with-wait-option

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

CcD

Changes to a different directory, or displays the current directory. However, if a different drive
letter is used, it does not switch to that different drive or volume.

Examples:

= cd

= Qutputs the current directory, e.g. C:\Windows\System32.
= cd C:\Program Files

= No surrounding quotes are needed around paths with spaces.
= cd \Program Files
= cd Documents
= cd %USERPROFILE%
= cd /d C:\Program Files

= Changes to the directory of the C: drive even if C: is not the current drive.
= C: & cd C:\Program Files.

= Changes to the directory of the C: drive even if C: is not the current drive.
= cd ..

= Changes to the parent directory. Does nothing if already in the root directory.
= cd..\.

= Changes to the parent directory two levels up.
= C: & cd C:\Windows\System32 & cd ..\..\Program Files

= Uses ".." to navigate through the directory tree up and down
= cd \\myserver\folder
» Does not work. Changing the directory directly to a network Universal Naming Convention
(UNC) folder does not work. Keywords: UNC path.
= subst A: \\myserver\folder && cd /d A:
= Changes the directory to a server folder with the use of #SUBST command, assuming
drive letter A: is free.
= pushd \\myserver\folder
= Automatically creates a drive for the folder and changes to it. After you use #POPD, the
drive gets unassigned again.
= cd C:\W*
= Changes to C:\Windows, in a typical Windows setup. Thus, wildcards work. Useful for
manual typing from the command line.
= cd C:\W**32

= Changes to C:\Windows\System32, in a typical Windows setup.
Links:

= cd at ss64.com (https://ss64.com/nt/cd.html)

= cd at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/cd)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 29/73

https://ss64.com/nt/cd.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cd

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

CHDIR

A synonym of CD.

CLS

Clears the screen.

COLOR

Sets the console foreground and background colors.
Examples:

= color f9

= Use white background and blue foreground.
= color

= Restore the original color setting.

Links:

= color at ss64.com (https://ss64.com/nt/color.html)

= color at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/color)

COPY

Copies files. See also MOVE, XCOPY and ROBOCOPY.
Examples:

= copy F:\File.txt

= Copies the file into the current directory, assuming the current directory is not F:\.
= copy "F:\My File.txt"

= As above; quotation marks are needed to surround a file with spaces.
= copy F:*.txt
= Copies the files located at F:\ and ending in dot txt into the current directory, assuming the
current directory is not F:\.
= copy F:*.txt.

= Does the same as the above command.
= copy File.txt

= |ssues an error message, as File.txt cannot be copied over itself.
= copy File1.txt File2.txt
= Copies File1.txt to File2.txt, overwriting File2.txt if confirmed by the user or if run from a
batch script.
= copy File.txt "My Directory"

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 30/73

https://ss64.com/nt/color.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/color

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= Copies File.txt into "My Directory" directory, assuming "My Directory" exists.
= copy Dir1 Dir2

= Copies all files directly located in directory Dir1 into Dir2, assuming Dir1 and Dir2 are
directories. Does not copy files located in nested directories of Dir1.

= copy *.txt *.bak

= For each *.txt file in the current folder, makes a copy ending with "bak" rather than "txt".

Links:

= copy at ss64.com (https://ss64.com/nt/copy.html)

= copy at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/copy)

DEL

Deletes files. Use with caution, especially in combination with wildcards. Only deletes files, not
directories, for which see RD. For more, type "del /?".

Examples:

del File.txt
del /s *.txt

= Deletes the files recursively including nested directories, but keeps the directories;
mercilessly deletes all matching files without asking for confirmation.

del /p /s *.txt

= As above, but asks for confirmation before every single file.
del /g *.txt

= Deletes without asking for confirmation.

Links:

= del at ss64.com (https://ss64.com/nt/del.html)

= del at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/del)

DIR

Lists the contents of a directory. Offers a range of options. Type "dir /?" for more help.
Examples:
= dir

= Lists the files and folders in the current folder, excluding hidden files and system files; uses
a different manner of listing if DIRCMD variable is non-empty and contains switches for dir.
= dir D:
= dir /b C:\Users
= dir/s

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 31/73

https://ss64.com/nt/copy.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/copy
https://ss64.com/nt/del.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/del

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= Lists the contents of the directory and all subdirectories recursively.
dir /s /b

= Lists the contents of the directory and all subdirectories recursively, one file per line,
displaying complete path for each listed file or directory.

= dir *.txt

= Lists all files with .txt extension.
= dir/a

= Includes hidden files and system files in the listing.
= dir /ah

= Lists hidden files only.
= dir/ad

= Lists directories only. Other letters after /A include S, I, R, Aand L.
= dir /ahd

= Lists hidden directories only.
= dir /a-d

= Lists files only, omitting directories.
= dir /a-d-h
= Lists non-hidden files only, omitting directories.
= dir /od
= Orders the files and folders by the date of last modification. Other letters after /O include N
(by name), E (by extension), S (by size), and G (folders first)
= dir /o-s
= Orders the files by the size descending; the impact on folder order is unclear.
= dir /-c /o-s /a-d

= Lists files ordered by size descending, omitting the thousands separator via /-C, excluding
folders.
= dir/s/b/od
= Lists the contents of the directory and all subdirectories recursively, ordering the files in

each directory by the date of last modification. The ordering only happens per directory; the
complete set of files so found is not ordered as a whole.

m dir/al/s

= Lists files recursively including hidden files and system files. Can be used to find out the
disk usage (directory size), by considering the final lines of the output.

Links:

= dir at ss64.com (https://ss64.com/nt/dir.html)

= dir at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/dir)

DATE

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 32/73

https://ss64.com/nt/dir.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/dir

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Displays or sets the date. The way the date is displayed depends on country settings. Date can also
be displayed using "echo %$DATE%".

Getting date in the iso format, like "2000-01-28": That is nowhere easy, as the date format
depends on country settings.

= |f you can assume the format of "Mon 01/28/2000", the following will do:
= set isodate=%date:~10,4%-%date:~4,2%-%date:~7,2%
= |f you have WMIC, the following is locale independent:

= for /f %i in (‘'wmic os get LocalDateTime') do @if %i Iss a if %i gtr O set localdt=%i
set isodate=%localdt:~0,4%-%localdt:~4,2%-%localdt:~6,2%

= To use the above in a batch, turn %i into %%i and remove @ from before if.
= |f you have Perl installed:

= for /f %i in (‘perl -MPQOSIX -le "print strftime '%Y-%m-%d', localtime™) do @set isodate=%i

Links:

= date at ss64.com (https://ss64.com/nt/date.html)

= date at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/date)

= How to get current datetime on Windows command line, in a suitable format for using in a
filename? (http://stackoverflow.com/questions/203090/how-to-get-current-datetime-on-window
s-command-line-in-a-suitable-format-for-us) at stackoverflow

ECHO

Displays messages, or turns command echoing on or off.
Examples:

= echoon

= @echo off
= echo Hello
= echo "hello"

= Displays the quotes too.
= echo %PATH%

= Displays the contents of PATH variable.
= echo Owner A& son

= Uses caret (") to escape ampersand (&), thereby enabling echoing ampersands.
= echo 1&echo 2&echo 3

= Displays three strings, each followed by a newline.
= echo.
= Qutputs a newline while the period is not being output. Without the period, outputs "echo

off" or "echo on". Adding a space before the period leads to the period being output. Other
characters having the same effect as period include :;,A(=+[].

echo %random%>>MyRandomNumbers.txt

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 33/73

https://ss64.com/nt/date.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/date
http://stackoverflow.com/questions/203090/how-to-get-current-datetime-on-windows-command-line-in-a-suitable-format-for-us

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= While it seems to output random numbers to MyRandomNumbers.txt, it actually does not
do so for numbers 0-9, since these, when placed before >>, indicate which channel is to be
redirected. See also #Redirection.

= echo 2>>MyRandomNumbers.txt

» Instead of echoing 2, redirects standard error to the file.
= (echo 2)>>MyRandomNumbers.txt

= Echoes even a small number (in this case 2) and redirects the result.
= >>MyRandomNumbers.txt echo 2

= Another way to echo even a small number and redirect the result.

Displaying a string without a newline requires a trick:

= set <NUL /p=Output of a command:

= Displays "Output of a command:". The output of the next command will be displayed

immediately after ":".
= set <NUL /p=Current time: & time /t

= Displays "Current time: " followed by the output of "time /t".
= (set <NUL /p=Current time: & time /t) >tmp.txt

= |ike before, with redirecting the output of both commands to a file.

Links:

= echo at ss64.com (https://ss64.com/nt/echo.html)

= echo at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/echo)

ELSE

An example:

--

i if exist file.txt (
; echo The file exists.
E) else (
echo The file does not exist.

..

See also IF.

ENDLOCAL

Ends local set of environment variables started using SETLOCAL. Can be used to create
subprograms: see Functions.

Links:

= endlocal at ss64.com (https://ss64.com/nt/endlocal.html)

= endlocal at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/endlocal)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 34/73

https://ss64.com/nt/echo.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/echo
https://ss64.com/nt/endlocal.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/endlocal

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

ERASE

A synonym of DEL.

EXIT

Exits the DOS console or, with /b, only the currently running batch or the currently executed
subroutine. If used without /b in a batch file, causes the DOS console calling the batch to close.

Examples:

= exit
= exit /b

Links:

= exit at ss64.com (https://ss64.com/nt/exit.html)

= exit at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/exit_2)

FOR

Iterates over a series of values, executing a command.

In the following examples, %i is to be used from the command line while %%i is to be used from a
batch. The index (e.g., %i) must be a single character variable name.

Examples:

= for %%i in (1,2,3) do echo %%i

= |n a batch, echoes 1, 2, and 3. In a batch, the command must use a double percent sign.

= The remaining examples are intended to be directly pasted into a command line, so they
use a single percent sign and include "@" to prevent repetitive display.

for %i in (1,2,3) do @echo %i

= From a command line, echoes 1, 2, and 3.

= The for command tries to interpret the items as file names and as patterns of file names
containing wildcards.

= |t does not complain if the items do not match existing file names, though.
for %i in (1,2,a*d*c*e*t) do @echo %i
= Unless you happen to have a file matching the third pattern, echoes 1 and 2, discarding the
third item.
for %i in (1 2,3;4) do @echo %i
= Echoes 1, 2, 3, and 4. Yes, a mixture of item separators is used.
for %i in (*.txt) do @echo %i
= Echoes file names of files located in the current folder and having the .txt extension.
for %i in ("C:\Windows\system32*.exe") do @echo %i

= Echoes file names matching the pattern.
» for /r %i in (*.txt) do @echo %i
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 35/73

https://ss64.com/nt/exit.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/exit_2

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Echoes file names with full paths, of files having the extension .txt located anywhere in the
current folder including nested folders.

for /d %i in (*) do @echo %i

= Echoes the names of all folders in the current folder.
= for /r/d %i in (*) do @echo %i
= Echoes the names including full paths of all folders in the current folder, including nested
folders.
= for /r %i in (*) do @if %~zi geq 1000000 echo %~zi %i
= For each file in the current folder and its subfolders that has the size greater than or equal

to 1,000,000 bytes, outputs the file size in bytes and the full path of the file. For the syntax
in %~zi, see #Percent tilde.

= for /I %iin (1,1,10) do @echo %i

= Echoes the numbers from 1 to 10.
= for /f "tokens="" %i in (list.txt) do @echo %i

= For each line in a file, echoes the line.
= for /f "tokens="" %i in (list1.txt list2.txt) do @echo %i

= For each line in the files, echoes the line.
= for /f "tokens=*" %i in (*.txt) do @echo %i

= Does nothing. Does not accept wildcards to match file names.
= for /f "tokens=1-3 delims=:" %a in ("First:Second::Third") do @echo %c-%b-%a

= Parses a string into tokens delimited by ":".
= The quotation marks indicate the string is not a file name.

= The second and third tokens are stored in %b and %c even though %b and %c are not
expressly mentioned in the part of the command before "do".

= The two consecutive colons are treated as one separator; %c is not "" but rather "Third".
= Does some of the job of the cut command from other operating systems.

= for /f "tokens=1-3* delims=:" %a in ("First:Second::Third:Fourth:Fifth") do @echo %c-%b-%a:

%d
= As above, just that the 4th and 5th items get captured in %d as "Fourth:Fifth", including the
separator.
= for /f "tokens=1-3* delims=:," %a in ("First,Second,: Third:Fourth:Fifth") do @echo %c-%b-%a:

%d

= Multiple delimiters are possible.
= for /f "tokens=1-3" %a in ("First Second Third,item") do @echo %c-%b-%a
= The default delimiters are space and tab. Thus, they differ from the separators used to
separate arguments passed to a batch.
= for /f "tokens="" %i in (‘cd') do @echo %i

= For each line of the result of a command, echoes the line.
= for /f "tokens="" %i in ('dir /b /a-d-h') do @echo %~nxai

= For each non-hidden file in the current folder, displays the file attributes followed by the file
name. In the string "%~nxai", uses the syntax described at #Percent tilde.

for /f "usebackq tokens="" %i in (‘dir /b /a-d-h") do @echo %~nxai

= As above, but using the backquote character (") around the command to be executed.
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 36/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= for /f "tokens="" %i in (‘tasklist | sort *& echo End') do @echo %i

= Pipes and ampersands in the command to be executed must be escaped using caret ().
= (for %i in (1,2,3) do @echo %i) > anyoldtemp.txt
= To redirect the entire result of a for loop, place the entire loop inside brackets before

redirecting. Otherwise, the redirection will tie to the body of the loop, so each new iteration
of the body of the loop will override the results of the previous iterations.

= for %i in (1,2,3) do @echo %i > anyoldtemp.txt

= An example related to the one above. It shows the consequence of failing to put the loop
inside brackets.

Continue: To jump to the next iteration of the loop and thus emulate the continue statement
known from many languages, you can use goto provided you put the loop body in a subroutine, as
shown in the following:

--

! for %%i in (a b c) do call : %%i
| exit /b

echo 1 %1
goto :
echo 2 %1

__

If you use goto directly inside the for loop, the use of goto breaks the loop bookkeeping. The
following fails:

--

! for %%i in (a b c) do (
: echo 1 %%i

goto :
echo 2 %%i

echo 3 %%i

..

= for at ss64.com (https://ss64.com/nt/for.ntml)

= for at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/for)

FTYPE

Displays or sets the command to be executed for a file type. See also ASSOC.
Examples:

= ftype

= Lists all associations of commands to be executed with file types, as, for example,
'Perl="C:\Perl\bin\perl.exe" "%1" %*'

= ftype | find "Excel.Sheet"

= Lists only associations whose display line contains "Excel.Sheet"

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 37/73

https://ss64.com/nt/for.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/for

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Links:

= ftype at ss64.com (https://ss64.com/nt/ftype.html)

= ftype at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/ftype)

= Making Python scripts run on Windows without specifying “.py” extension at stackoverflow (htt
p://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-speci
fying-py-extension)

GOTO

Goes to a label.

An example:

..

i goto :

)

! echo Hello 1

i REM Hello 1 never gets printed.

i echo Hello 2
i goto :

i echo Hello 3
i REM Hello 3 never gets printed. Eof is a virtual Llabel standing for the end of file.

__

Goto within the body of a for loop makes cmd forget about the loop, even if the label is within the
same loop body.

Links:

= goto at ss64.com (https://ss64.com/nt/goto.html)

= goto at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/goto)

IF

Conditionally executes a command. Documentation is available by entering IF /? to CMD prompt.
Available elementary tests:

= exist <filename>

» <string>==<string>

= <expression1> equ <expression2> -- equals

= <expression1> neq <expression2> -- not equal

= <expression1> Iss <expression2> -- less than

= <expression1> leq <expression2> -- less than or equal
= <expression1> gtr <expression2> -- greater than

= <expression1> geq <expression2> -- greater than or equal
= defined <variable>

= errorlevel <number>

= cmdextversion <number>

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 38/73

https://ss64.com/nt/ftype.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ftype
http://stackoverflow.com/questions/9037346/making-python-scripts-run-on-windows-without-specifying-py-extension
https://ss64.com/nt/goto.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/goto

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

To each elementary test, "not" can be applied. Apparently there are no operators like AND, OR,
etc. to combine elementary tests.

The /I switch makes the == and equ comparisons ignore case.

An example:

i if not exist %targetpath% (
echo Target path not found.
exit /b

__

Examples:

= if not 1 equ 0 echo Not equal
= if 1 equ 0 echo A & echo B

= Does nothing; both echo commands are subject to the condition.
= if not 1 equ 0 goto :mylabel
= if not a geq b echo Not greater
= if b geq a echo Greater
= if b geq A echo Greater in a case-insensitive comparison
= if B geq a echo Greater in a case-insensitive comparison
= if 0 equ 00 echo Numerical equality
= if not 0==00 echo String inequality
= if 01 geq 1 echo Numerical comparison
= if not "01" geq "1" echo String comparison
= if 1 equ O (echo Equal) else echo Unequal

= Notice the brackets around the positive then-part to make it work.
= if not a==A echo Case-sensitive inequality
= if /i a==A echo Case-insensitive equality
= if /i==/i echo This does not work
= if "/i"=="/i" echo Equal, using quotation marks to prevent the literal meaning of /i

Links:

= if at ss64.com (https://ss64.com/nt/if.html)

= if at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-comm
ands/if)

MD

Creates a new directory or directories. Has a synonym MKDIR; see also its antonym RD.
Examples:

= md Dir

= Creates one directory in the current directory.
= md Dir1 Dir2

= Creates two directories in the current directory.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 39/73

https://ss64.com/nt/if.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/if

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= md "My Dir With Spaces"

= Creates a directory with a name containing spaces in the current directory.

Links:

= md at ss64.com (https://ss64.com/nt/md.html)

= md at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/md)

MKDIR

A synonym for MD.

MKLINK

Makes a symbolic link or other type of link. Available since Windows Vista.
Links:

= mklink at ss64.com (https://ss64.com/nt/mklink.html)

= mklink at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/mklink)

MOVE

Moves files or directories between directories, or renames them. See also REN.
Examples:

= move File1.txt File2.txt

= Renames File1.txt to File2.txt, overwriting File2.txt if confirmed by the user or if run from a
batch script.
= move File.txt Dir
= Moves File.txt file into Dir directory, assuming File.txt is a file and Dir is a directory;
overwrites target file Dir\a.txt if conditions for overwriting are met.
= move Dir1 Dir2

= Renames directory Dir1 to Dir2, assuming Dir1 is a directory and Dir2 does not exist.
= move Dir1 Dir2

= Moves directory Dir1 into Dir2, resulting in existence of Dir2\Dir1, assuming both Dir1 and
Dir2 are existing directories.

= move F:\File.txt

= Moves the file to the current directory.
= move F:*.ixt

= Moves the files located at F:\ and ending in dot txt into the current directory, assuming the
current directory is not F:\.

Links:

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 40/73

https://ss64.com/nt/md.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/md
https://ss64.com/nt/mklink.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mklink

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= move at ss64.com (https://ss64.com/nt/move.html)

= move at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/move)

PATH

Outputs or sets the value of the PATH environment variable. When outputing, includes "PATH="
at the beginning of the output.

Examples:

path
= Qutputs the PATH. An example output:

» PATH=C:\Windows\system32;C:\Windows;C:\Program Files\Python27
path C:\Users\Joe Hoe\Scripts;%path%

= Extends the path with C:\Users\Joe Hoe\Scripts, applying only to the process of the
cmd.exe.

path ;

= Empties the path.
echo %path% | perl -pe "s/;An/g" | sort

= Shows the folders in the path sorted if you have perl installed.

Links:

= path at ss64.com (https://ss64.com/nt/path.html)

= path at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/path)

PAUSE

Prompts the user and waits for a line of input to be entered.
Links:

= pause at SS64.com (https://ss64.com/nt/pause.html)

= pause at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/pause)

POPD

Changes to the drive and directory popped from the directory stack. The directory stack is filled
using the PUSHD command.

Links:

= popd at ss64.com (https://ss64.com/nt/popd.html)

= popd at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/popd)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 41/73

https://ss64.com/nt/move.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/move
https://ss64.com/nt/path.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/path
https://ss64.com/nt/pause.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/pause
https://ss64.com/nt/popd.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/popd

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

PROMPT

Can be used to change or reset the cmd.exe prompt. It sets the value of the PROMPT environment
variable.

--

1 C:\>PROMPT MyPrompt$G
1

E MyPrompt>CD
1 C:

! MyPrompt>PROMPT

..

The PROMPT command is used to set the prompt to "MyPrompt>". The CD shows that the current
directory path is "C:\". Using PROMPT without any parameters sets the prompt back to the
directory path.

Links:

= prompt at ss64.com (https://ss64.com/nt/prompt.html)

= prompt at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/prompt)

PUSHD

Pushes the current directory onto the directory stack, making it available for the POPD command
to retrieve, and, if executed with an argument, changes to the directory stated as the argument.

Links:

= pushd at ss64.com (https://ss64.com/nt/pushd.html)

= pushd at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/pushd)

RD

Removes directories. See also its synonym RMDIR and antonym MD. Per default, only empty
directories can be removed. Also type "rd /?".

Examples:

= rd Dir1

= rd Dir1 Dir2

= rd "My Dir With Spaces"
= rd /s Dir1

= Removes the directory Dir1 including all the files and subdirectories in it, asking for
confirmation once before proceeding with the removal. To delete files recursively in nested
directories with a confirmation per file, use DEL with /s switch.

= rd /q /s Dir1

= Like above, but without asking for confirmation.

Links:
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 42/73

https://ss64.com/nt/prompt.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/prompt
https://ss64.com/nt/pushd.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/pushd

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= rd at ss64.com (https://ss64.com/nt/rd.html)

= rd at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/rd)

REN

Renames files and directories.
Examples:

= ren filewithtpyo.txt filewithtypo.txt
= ren *.cxx *.cpp

Links:

= ren at ss64.com (https://ss64.com/nt/ren.html)

= ren at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/ren)

= How does the Windows RENAME command interpret wildcards? (http://superuser.com/questio
ns/475874/how-does-the-windows-rename-command-interpret-wildcards), superuser.com

RENAME

This is a synonym of REN command.

REM

Used for remarks in batch files, preventing the content of the remark from being executed.

An example:

..

E REM A remark that does not get executed
i echo Hello REM This remark gets displayed by echo
i echo Hello & REM This remark gets ignored as wished
: This sentence has been marked as a remark using double colon.

__

REM is typically placed at the beginning of a line. If placed behind a command, it does not work,
unless preceded by an ampersand, as shown in the example above.

Double colon is an alternative to REM. It can cause trouble when used in the middle of sequences
in parentheses, like those used in FOR loops. The double colon seems to be just a trick, a label that
starts with a colon.

Links:

= rem at ss64.com (https://ss64.com/nt/rem.html)

= rem at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/rem)

= Which comment style should | use in batch files? (https://stackoverflow.com/questions/124078
00/which-comment-style-should-i-use-in-batch-files?noredirect=1&Ilg=1), stackoverflow.com

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 43/73

https://ss64.com/nt/rd.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/rd
https://ss64.com/nt/ren.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ren
http://superuser.com/questions/475874/how-does-the-windows-rename-command-interpret-wildcards
https://ss64.com/nt/rem.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/rem
https://stackoverflow.com/questions/12407800/which-comment-style-should-i-use-in-batch-files?noredirect=1&lq=1

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

RMDIR

This is a synonym of RD.

SET

Displays or sets environment variables. With /P switch, it asks the user for input, storing the result
in the variable. With /A switch, it performs simple arithmetic calculations, storing the result in the
variable. With string assignments, there must be no spaces before and after the equality sign; thus,
"set name = Peter" does not work, while "set name=Peter" does.

Examples:

= set

= Displays a list of environment variables
= set HOME

= Displays the values of the environment variables whose names start with "THOME"

= set MYNUMBER=56

= set HOME=%HOME%;C:\Program Files\My Bin Folder
= set /P user_input=Enter an integer:

= set/Aresult=4*(6/3)

= Sets the result variable with the result of a calculation. See also #Calculation.

Links:

= set at ss64.com (https://ss64.com/nt/set.html)

= set at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/set_1)

SETLOCAL

When used in a batch file, makes all further changes to environment variables local to the current
batch file. When used outside of a batch file, does nothing. Can be ended using ENDLOCAL.
Exiting a batch file automatically calls "end local". Can be used to create subprograms: see
Functions.

Furthermore, can be wused to enable delayed expansion like this: "setlocal
EnableDelayedExpansion". Delayed expansion consists in the names of variables enclosed in
exclamation marks being replaced with their values only after the execution reaches the location of
their use rather than at an earlier point.

The following is an example of using delayed expansion in a script that prints the specified number
of first lines of a file, providing some of the function of the command "head" known from other
operating systems:

--

i @echo off

i ocall : 2 File.txt
i exit /b

E :: Function myhead

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 44/73

https://ss64.com/nt/set.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

V%1 - lines count, %2 - file name

i setlocal EnableDelayedExpansion

1 set counter=1

i for /f "tokens=*" %%i in (%2) do (
echo %%i

set /a counter=!counter!+1

if lcounter! gtr %1 exit /b

__

= setlocal at ss64.com (https://ss64.com/nt/setlocal.html)
= EnableDelayedExpansion at ss64.com (https://ss64.com/nt/delayedexpansion.html)

= setlocal at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows
-commands/setlocal)

SHIFT

Shifts the batch file arguments along, but does not affect %*. Thus, if %1=Hello 1, %2=Hello 2, and
%3=Hello 3, then, after SHIFT, %1=Hello 2, and %2=Hello 3, but %* is "Hello 1" "Hello 2" "Hello

3".
Links:

= shift at ss64.com (https://ss64.com/nt/shift.ntml)

= shift at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/shift)

START

Starts a program in new window, or opens a document. Uses an unclear algorithm to determine
whether the first passed argument is a window title or a program to be executed; hypothesis: it
uses the presence of quotes around the first argument as a hint that it is a window title.

Examples:

= start notepad.exe & echo "Done."

= Starts notepad.exe, proceeding to the next command without waiting for finishing the
started one. Keywords: asynchronous.

start "notepad.exe"

= Launches a new console window with notepad.exe being its title, apparently an undesired
outcome.

start "" "C:\Program Files\Internet Exploren\iexplore.exe"

= Starts Internet Explorer. The empty " passed as the first argument is the window title of a
console that actually does not get opened, or at least not visibly so.

start "C:\Program Files\Internet Explorer\iexplore.exe"

= Launches a new console window with "C:\Program Files\Internet Explorer\iexplore.exe"
being its title, apparently an undesired outcome.

start /wait notepad.exe & echo "Done."

= Starts notepad.exe, waiting for it to end before proceeding.
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 45/73

https://ss64.com/nt/setlocal.html
https://ss64.com/nt/delayedexpansion.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setlocal
https://ss64.com/nt/shift.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shift

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= start /low notepad.exe & echo "Done."

= As above, but starting the program with a low priority.
= start " MyFile.xls

= Opens the document in the program assigned to open it.
= start

= Starts a new console (command-line window) in the same current folder.
= start.

= Opens the current folder in Windows Explorer.
= start ..

= Opens the parent folder in Windows Explorer.
= start " "mailto:"

= Starts the application for writing a new email.
= start " "mailto:joe.hoe@hoemail.com?subject=Notification&body=Hello Joe, I'd like to..."
= Starts the application for writing a new email, specifying the to, subject and body of the new
email.
= start "" "mailto:joe.hoe@hoemail.com?subject=Notification&body=Hello Joe,%0a%0al'd like
to..."
= As above, with newlines entered as %0a.
= start /b TODO:example-application-where-this-is-useful

= Starts the application without opening a new console window, redirecting the output to the
console from which the start command was called.

Links:

= start at ss64.com (https://ss64.com/nt/start.html)

= start at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/start)

= How to use command line switches to create a pre-addressed e-mail message in Outlook (http
s:/[support.microsoft.com/en-us/help/287573/how-to-use-command-line-switches-to-create-a-p
re-addressed-e-mail-message-in-outlook), support.microsoft.com

TIME

Displays or sets the system time.
Links:

= time at ss64.com (https://ss64.com/nt/time.html)

= time at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/time)

TITLE

Sets the title displayed in the console window.

Links:
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 46/73

https://ss64.com/nt/start.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/start
https://support.microsoft.com/en-us/help/287573/how-to-use-command-line-switches-to-create-a-pre-addressed-e-mail-message-in-outlook
https://ss64.com/nt/time.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/time

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= title at ss64.com (https://ss64.com/nt/title.html)

= title at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/title_1)

TYPE

Prints the content of a file or files to the output.
Examples:

= type filename.txt
= type a.txt b.txt

= type *.txt

= type NUL > tmp.txt

= Create an empty file (blank file).
Links:

= type at ss64.com (https://ss64.com/nt/type.html)

= type at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/type)

VER

Shows the command processor or operating system version.

C:\>VER

i Microsoft Windows XP [Version 5.1.2600]

__

Some version strings:

= Microsoft Windows [Version 5.1.2600]

= For Windows XP
= Microsoft Windows [Version 6.0.6000]

s For Windows Vista

The word "version" appears localized.

Links:

= ver at ss64.com (https://ss64.com/nt/ver.html)

= ver at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/ver)

= Operating System Version at Microsoft (https://docs.microsoft.com/en-us/windows/desktop/sysi
nfo/operating-system-version)

= List of Microsoft Windows versions, wikipedia.org

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 47173

https://ss64.com/nt/title.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/title_1
https://ss64.com/nt/type.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/type
https://ss64.com/nt/ver.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ver
https://docs.microsoft.com/en-us/windows/desktop/sysinfo/operating-system-version
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Windows Build Numbers (http://eddiejackson.net/wp/?p=14145), eddiejackson.net

= mxpv/windows_build _numbers.txt (https://gist.github.com/mxpv/2935584#file-windows_build_n
umbers-txt), gist.github.com

VERIFY
Sets or clears the setting to verify whether COPY files etc. are written correctly.
Links:

= verify at ss64.com (https://ss64.com/nt/verify.html)

= verify at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/verify 1)

VOL
Displays volume labels.
Links:

= vol at ss64.com (https://ss64.com/nt/vol.html)

= vol at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/vol)

External commands

External commands available to Windows command interpreter are separate executable program
files, supplied with the operating system by Microsoft, or bundled as standard with the third-party
command interpreters. By replacing the program files, the meanings and functions of these
commands can be changed.

Many, but not all, external commands support the "/?" convention, causing them to write on-line
usage information to their standard output and then to exit with a status code of o.

ARP

Displays or changes items in the address resolution protocol cache, which maps IP addresses to
physical addresses.

Links:

= arp at ss64.com (https://ss64.com/nt/arp.html)

= at arp Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/arp)

AT

Schedules a program to be run at a certain time. See also SCHTASKS.

Links:

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 48/73

http://eddiejackson.net/wp/?p=14145
https://gist.github.com/mxpv/2935584#file-windows_build_numbers-txt
https://ss64.com/nt/verify.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/verify_1
https://ss64.com/nt/vol.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/vol
https://ss64.com/nt/arp.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/arp

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= at at ss64.com (https://ss64.com/nt/at.html)

= at at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/at)

ATTRIB

Displays or sets file attributes. With no arguments, it displays the attributes of all files in the
current directory. With no attribute modification instructions, it displays the attributes of the files
and directories that match the given search wildcard specifications. Similar to chmod of other
operating systems.

Modification instructions:

= To add an attribute, attach a '+' in front of its letter.
= To remove an attribute, attach a '-' in front of its letter
= Attributes:

= A - Archived

H - Hidden

S - System

R - Read-only

...and possibly others.

Examples:

= attrib

= Displays the attributes of all files in the current directory.
= attrib File.txt

= Displays the attributes of the file.
= attrib +r File.txt

= Adds the "Read-only" attribute to the file.
= attrib -a File.txt

= Removes the "Archived" attribute from the file.
» attrib -a +r File.txt

= Removes the "Archived" attribute and adds the "Read-only" attribute to the file.
= attrib +r *.txt

= Acts on a set of files.
m attrib /S +r *.txt

= Acts recursively in subdirectories.
For more, type "attrib /?".
Links:

= attrib at ss64.com (https://ss64.com/nt/attrib.html)

= attrib at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/attrib)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 49/73

https://ss64.com/nt/at.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/at
https://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#chmod
https://ss64.com/nt/attrib.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/attrib

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

BCDEDIT

(Not in XP). Edits Boot Configuration Data (BCD) files. For more, type "bcdedit /?".
Links:

= bcdedit at ss64.com (https://ss64.com/nt/bcdedit.html)

= at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-comma
nds/bcdedit)

CACLS

Shows or changes discretionary access control lists (DACLs). See also ICACLS. For more, type
"cacls /?".

Links:

= cacls at ss64.com (https://ss64.com/nt/cacls.html)

= cacls at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/cacls_1)

CHCP

Displays or sets the active code page number. For more, type "chcp /?".
Links:

= chcp at ss64.com (https://ss64.com/nt/chcp.html)

= chcp at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/chcp)

CHKDSK

Checks disks for disk problems, listing them and repairing them if wished. For more, type "chkdsk
/?"-

Links:

= chkdsk at ss64.com (https://ss64.com/nt/chkdsk.html)

= chkdsk at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/chkdsk)

CHKNTFS

Shows or sets whether system checking should be run when the computer is started. The system
checking is done using Autochk.exe. The "NTFS" part of the command name is misleading, since
the command works not only with NTFS file system but also with FAT and FAT32 file systems. For
more, type "chkntfs /?".

Links:

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 50/73

https://ss64.com/nt/bcdedit.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/bcdedit
https://ss64.com/nt/cacls.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cacls_1
https://ss64.com/nt/chcp.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chcp
https://ss64.com/nt/chkdsk.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= chkntfs at ss64.com (https://ss64.com/nt/chkntfs.html)

= chkntfs at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/chkntfs)

CHOICE

Lets the user choose one of multiple options by pressing a single key, and sets the error level as per
the chosen option. Absent in Windows 2000 and Windows XP, it was reintroduced in Windows
Vista, and has remained in Windows 77 and 8.

Examples:

= choice /m "Do you agree"

= Presents the user with a yes/no question, setting the error level to 1 for yes and to 2 for no.
If the user presses Control + C, the error level is 0.

= choice /c rgb /m "Which color do you prefer"

= Presents the user with a question, and indicates the letters for the user. Responds to user
pressing r, g or b, setting the error level to 1, 2 or 3.

An alternative is "set /p"; see SET.
Links:

= choice at ss64.com (https://ss64.com/nt/choice.html)

= choice at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/choice)

CIPHER
Shows the encryption state, encrypts or decrypts folders on a NTFS volume.
Links:

= cipher at ss64.com (https://ss64.com/nt/cipher.html)

= cipher at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/cipher)

CLIP
(Not in XP, or make a copy from Server 2003) Places the piped input to the clipboard.
Examples:

= set | clip

= Places the listing of environment variables to the clipboard.
= clip < File1.txt

= Places the content of File1.txt to the clipboard.

Links:

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 51/73

https://ss64.com/nt/chkntfs.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkntfs
https://ss64.com/nt/choice.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/choice
https://ss64.com/nt/cipher.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cipher

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= clip at ss64.com (https://ss64.com/nt/clip.html)

= clip at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/clip)

CMD

Invokes another instance of Microsoft's CMD.
Links:

= cmd at ss64.com (https://ss64.com/nt/cmd.html)

= cmd at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/cmd)

COMP

Compares files. See also FC.
Links:

= comp at ss64.com (https://ss64.com/nt/comp.html)

= comp at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/comp)

COMPACT

Shows or changes the compression of files or folders on NTFS partitions.
Links:

= compact at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/compact)

CONVERT

Converts a volume from FAT16 or FAT32 file system to NTFS file system.
Links:

= convert at ss64.com (https://ss64.com/nt/convert.html)

= convert at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/convert)

DEBUG

Allows to interactively examine file and memory contents in assembly language, hexadecimal or
ASCII. Available in 32-bit Windows including Windows 7; the availability in 64-bit Windows is
unclear. In modern Windows, useful as a quick hack to view hex content of a file. Keywords: hex
dump, hexdump, hexadecimal dump, view hex, view hexadecimal, disassembler.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 52/73

https://ss64.com/nt/clip.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/clip
https://ss64.com/nt/cmd.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://ss64.com/nt/comp.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/comp
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/compact
https://ss64.com/nt/convert.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/convert

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Debug offers its own command line. Once on its command like, type "?" to find about debug
commands.

To view hex of a file, invoke debug.exe with the file name as a parameter, and then repeatedly type
"d" followed by enter on the debug command line.

Limitations:

= Being a DOS program, debug chokes on long file names. Use dir /x to find the 8.3 file name,
and apply debug on that one.

= Debug cannot view larger files.
Links:

= Debug (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb4910
40(v=technet.10)) for Windows XP at TechNet / Microsoft Docs

= Debug (https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc722863(v=technet.1
0)) for MS-DOS at TechNet / Microsoft Docs

= W:Debug (command)

DISKCOMP

Compares the content of two floppies.
Links:

= diskcomp at ss64.com (https://ss64.com/nt/diskcomp.html)

= diskcomp at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windo
ws-commands/diskcomp)

DISKCOPY

Copies the content of one floppy to another.
Links:

= diskcopy at ss64.com (https://ss64.com/nt/diskcopy.html)

= diskcopy at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/diskcopy)

DISKPART

Shows and configures the properties of disk partitions.
Links:

= diskpart at ss64.com (https://ss64.com/nt/diskpart.html)

= diskpart at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windo
ws-xp/bb490893%28v%3dtechnet.10%29), for XP

= diskpart at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windo
ws-server-2012-R2-and-2012/cc770877%28v%3dws.11%29)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 53/73

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb491040(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc722863(v=technet.10)
https://en.wikipedia.org/wiki/Debug_(command)
https://ss64.com/nt/diskcomp.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/diskcomp
https://ss64.com/nt/diskcopy.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/diskcopy
https://ss64.com/nt/diskpart.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490893%28v%3dtechnet.10%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc770877%28v%3dws.11%29

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

DOSKEY

Above all, creates macros known from other operating systems as aliases. Moreover, provides
functions related to command history, and enhanced command-line editing. Macros are an
alternative to very short batch scripts.

Macro-related examples:

doskey da=dir /s /b

= Creates a single macro called "da"
doskey np=notepad $1

= Creates a single macro that passes its first argument to notepad.
doskey /macrofile=doskeymacros.txt

= Loads macro definitions from a file.

doskey /macros

m Lists all defined macros with their definitions.

doskey /macros | find "da"

= Lists all macro definitions that contain "da" as a substring; see also FIND.

Command history-related examples:

= doskey /history

= Lists the complete command history.
= doskey /history | find "dir"

= Lists each line of command history that contains "dir" as a substring
= doskey /listsize=100

= Sets the size of command history to 100.
To get help on doskey from command line, type "doskey /?".
Links:

= doskey at ss64.com (https://ss64.com/nt/doskey.html)

= doskey at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/doskey)

DRIVERQUERY

Shows all installed device drivers and their properties.
Links:

= driverquery at ss64.com (https://ss64.com/nt/driverquery.html)

= driverquery at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/wind
ows-commands/driverquery)

EXPAND

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 54/73

https://ss64.com/nt/doskey.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/doskey
https://ss64.com/nt/driverquery.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/driverquery

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Extracts files from compressed .cab cabinet files. See also # MAKECAB.

Links:

= expand at ss64.com (https://ss64.com/nt/expand.html)

= expand at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/expand)

FC

Compares files, displaying the differences in their content in a peculiar way.
Examples:

= fc File1.txt File2.txt >NUL && Echo Same || echo Different or error

= Detects difference using the error level of fc. The error level of zero means the files are the
same; non-zero can mean the files differ but also that one of the files does not exist.

Links:

» fc at ss64.com (https://ss64.com/nt/fc.html)

= fc at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/fc)

FIND

Searches for a string in files or input, outputting matching lines. Unlike FINDSTR, it cannot search
folders recursively, cannot search for a regular expression, requires quotation marks around the
sought string, and treats space literally rather than as a logical or.

Examples:

= find "(object" *.txt
dir /S /B | find "receipt"
dir /S /B | find /I /V "receipt"

= Prints all non-matching lines in the output of the dir command, ignoring letter case.
find /C "inlined" *.h

= |nstead of outputting the matching lines, outputs their count. If more than one file is
searched, outputs one count number per file preceded with a series of dashes followed by
the file name; does not output the total number of matching lines in all files.

find /C /V "" < file.txt

= Qutputs the number of lines AKA line count in "file.txt". Does the job of "wc -I" of other
operating systems. Works by treating "" as a string not found on the lines. The use of
redirection prevents the file name from being output before the number of lines.

type file.txt | find /C /V ™

= Like the above, with a different syntax.
type *.txt 2>NUL | find /C /V ™"

= Qutputs the sum of line counts of the files ending in ".txt" in the current folder. The "2>NUL"
is a redirection of standard error that removes the names of files followed by empty lines

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 55/73

https://ss64.com/nt/expand.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/expand
https://ss64.com/nt/fc.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fc

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
from the output.
= find "Schonheit" *.txt
= |f run from a batch file saved in unicode UTF-8 encoding, searches for the search term
"Schonheit" in UTF-8 encoded *.txt files. For this to work, the batch file must not contain
the byte order mark written by Notepad when saving in UTF-8. Notepad++ is an example of

a program that lets you write UTF-8 encoded plain text files without byte order mark. While
this works with find command, it does not work with #FINDSTR.

= find "Copyright" C:\Windows\system32\a*.exe

= Works with binary files no less than text files.

Links:

= find at ss64.com (https://ss64.com/nt/find.html)

= find at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/find)

FINDSTR

Searches for regular expressions or text strings in files. Does some of the job of "grep" command
known from other operating systems, but is much more limited in the regular expressions it
supports.

Treats space in a regular expression as a disjunction AKA logical or unless prevented with /c
option.

Examples:

= findstr /s "[0-9][0-9].*[0-9][0-9]" *.h *.cpp

= Searches recursively all files whose name ends with dot h or dot cpp, printing only lines
that contain two consecutive decimal digits followed by anything followed by two
consecutive decimal digits.

findstr "a.*b a.*c" File.txt

= Qutputs all lines in File.txt that match any of the two regular expressions separated by the
space. Thus, the effect is one of logical or on regular expressions.

echo world | findstr "hello wo.ld"

= Does not match. Since the 1st item before the space does not look like a regex, findstr
treats the whole search term as a plain search term.

echo world | findstr /r "hello wo.ld"

= Matches. The use of /r forces regex treatment.
findstr /r /c:"ID: *[0-9]*" File.txt

= Qutputs all lines in File.txt that match the single regular expression containing a space. The
use of /c prevents the space from being treated as a logical or. The use of /r switches the
regular expression treatment on, which was disabled by default by the use of /c. To test
this, try the following:

= echo ID: 12[findstr /r /c:"ID: *[0-9]*$"
= Matches.

= echo ID: 12[findstr /c:"ID: *[0-9]*$"

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 56/73

https://ss64.com/nt/find.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/find

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= Does not match, as the search string is not interpreted as a regular expression.
= echo ID: abclfindstr "ID: *[0-9]*$"

» Matches despite the output of echo failing to match the complete regular
expression: the search is interpreted as one for lines matching "ID:" or "*[0-9]*$".

= findstr /ric:"id: *[0-9]*" File.txt

= Does the same as the previous example, but in a case-insensitive manner.

= While findstr enables this sort of accumulation of switches behind a single "/*, this is not
possible with any command. For instance, "dir /bs" does not work, while "dir /b /s" does.

= To test this, try the following:
= echo ID: 12[findstr /ric:"id: *[0-9]*$"
= echo ID: ab|findstr /ric:"id: *[0-9]*$"
= findstr /msric:"id: *[0-9]*" *.txt
= Like above, but recursively for all files per /s, displaying only matching files rather than
matching lines per /m.
= echo hel lo | findstr /c:"hel lo" /c:world

= /c switch can be used multiple times to create logical or.
= echo \hello\ | findstr "\hello\"
= Does not match. Backslash before quotation marks and multiple other characters acts as
an escape; thus, \" matches ".
= echo \hello\ | findstr "\\hello\\"

= Matches. Double backslash passed to findstr stands for a single backslash.
= echo \hello\ | findstr \hello\
= Matches. None of the single backslashes passed to findstr is followed by a character on
which the backslash acts as an escape.
= echo *hey | findstr *"hey | more
= To search for a quote (quotation mark), you need to escape it two times: once for the shell
using caret (*), and once for findstr using backslash (\).
= echo *hey | findstr A"*"hey there®™" | more
= To search for a quote and have the search term enclosed in quotes as well, the enclosing
quotes need to be escaped for the shell using caret (*).
= echo //comment line | findstr \/
= |f forward slash (/) is the 1st character in the search term, it needs to be escaped with a
backslash (\). The escaping is needed even if the search term is enclosed in quotes.
= findstr /f:FileList.txt def.*():
= Search in the files stated in FileList.txt, one file per line. File names in FileList.txt can
contain spaces and do not need to be surrounded with quotation marks for this to work.
= findstr /g:SearchTermsFile.txt *.txt
» Search for the search terms found in SearchTermsFile.txt, one search term per line. A
space does not serve to separate two search terms; rather, each line is a complete search
term. A line is matched if at least one of the search terms matches. If the first search term

looks like a regex, the search will be a regex one, but if it looks like a plain search term, the
whole search will be a plain one even if 2nd or later search terms look like regex.

findstr /xlg:File1.txt File2.txt

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 57/73

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= QOutputs set intersection: lines present in both files.
= findstr /xlvg:File2.txt File1.txt

= Qutputs set difference: File1.ixt - File2.txt.
= findstr /m Microsoft C:\Windows\system32*.com

= Works with binary files no less than text files.

Limitations of the regular expressions of "findstr", as compared to "grep":

= No support of groups -- "\(", "\)".

= No support of greedy iterators -- "*?".

= No support of "zero or one of the previous" -- "?".
= And more.

Other limitations: There is a variety of limitations and strange behaviors as documented at What
are the undocumented features and limitations of the Windows FINDSTR command? (http://stac
koverflow.com/questions/8844868/what-are-the-undocumented-features-and-limitations-of-the-
windows-findstr-comman).

Bugs:

= echo bblfindstr "bb baaaa"

= Does not find anything in multiple Windows versions, but it should.

Also consider typing "findstr /?".
Links:

» findstr at ss64.com (https://ss64.com/nt/findstr.html)

= findstr at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/findstr)

= What are the undocumented features and limitations of the Windows FINDSTR command? (htt
p://stackoverflow.com/questions/8844868/what-are-the-undocumented-features-and-limitations
-of-the-windows-findstr-comman) at StackOverflow

FORFILES

Finds files by their modification date and file name pattern, and executes a command for each
found file. Is very limited, especially compared to the find command of other operating systems.
Available since Windows Vista. For more, type "forfiles /?".

Examples:

= forfiles /s /d 06/10/2015 /c "cmd /c echo @fdate @path"

= For each file in the current folder and its subfolders modified on 10 June 2015 or later,
outputs the file modification date and full file path. The date format after /d is locale
specific. Thus, allows to find most recently modified files. Keywords: most recently changed
files.

= forfiles /m *.txt /s /d 06/10/2015 /c "cmd /c echo @fdate @path"

= As above, but only for files ending in .txt.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 58/73

http://stackoverflow.com/questions/8844868/what-are-the-undocumented-features-and-limitations-of-the-windows-findstr-comman
https://ss64.com/nt/findstr.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/findstr
http://stackoverflow.com/questions/8844868/what-are-the-undocumented-features-and-limitations-of-the-windows-findstr-comman

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Links:

» forfiles at ss64.com (https://ss64.com/nt/forfiles.html)

= forfiles at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/forfiles)

forfiles /?

FORMAT

Formats a disk to use Windows-supported file system such as FAT, FAT32 or NTFS, thereby
overwriting the previous content of the disk. To be used with great caution.

Links:

= format at ss64.com (https://ss64.com/nt/format.html)

= format at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/format)

FSUTIL

A powerful tool performing actions related to FAT and NTFS file systems, to be ideally only used
by powerusers with an extensive knowledge of the operating systems.

Links:

= fsutil at ss64.com (https://ss64.com/nt/fsutil.html)

= fsutil at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/fsutil)

= Fsutil: behavior (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/fsutil-behavior)

= Fsutil: dirty (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/fsutil-dirty)

= Fsutil: file (https://docs.microsoft.com/en-us/windows-server/administration/windows-comm
ands/fsutil-file)

= Fsutil: fsinfo (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/fsutil-fsinfo)

= Fsutil: hardlink (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/fsutil-hardlink)

= Fsutil: objectid (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/fsutil-objectid)

= Fsutil: quota (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/fsutil-quota)

= Fsutil: reparsepoint (https://docs.microsoft.com/en-us/windows-server/administration/windo
ws-commands/fsutil-reparsepoint)

= Fsutil: sparse (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/fsutil-sparse)

= Fsutil: usn (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/fsutil-usn)

= Fsutil: volume (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/fsutil-volume)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 59/73

https://ss64.com/nt/forfiles.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
https://ss64.com/nt/format.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://ss64.com/nt/fsutil.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-behavior
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-dirty
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-file
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-fsinfo
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-hardlink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-objectid
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-quota
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-reparsepoint
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-sparse
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-volume

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

GPRESULT

Displays group policy settings and more for a user or a computer.
Links:

= gpresult at ss64.com (https://ss64.com/nt/gpresult.html)

= gpresult at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows
-commands/gpresult)

= Wikipedia:Group Policy

GRAFTABL

Enables the display of an extended character set in graphics mode. For more, type "graftabl /?".
Links:

= graftabl at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/graftabl)

HELP

Shows command help.
Examples:

= help

= Shows the list of Windows-supplied commands.
= help copy

= Shows the help for COPY command, also available by typing "copy /?".

Links:

= help at ss64.com (https://ss64.com/nt/help.html)

= help at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/help)

ICACLS

(Not in XP) Shows or changes discretionary access control lists (DACLSs) of files or folders. See also
CACLS. Fore more, type "icacls /?".

Links:

= jcacls at ss64.com (https://ss64.com/nt/icacls.html)

= jcacls at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/icacls)

IPCONFIG

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 60/73

https://ss64.com/nt/gpresult.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/gpresult
https://en.wikipedia.org/wiki/Group_Policy
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/graftabl
https://ss64.com/nt/help.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/help
https://ss64.com/nt/icacls.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Displays Windows IP Configuration. Shows configuration by connection and the name of that
connection (i.e. Ethernet adapter Local Area Connection) Below that the specific info pertaining to
that connection is displayed such as DNS suffix and ip address and subnet mask.

Links:

= ipconfig at ss64.com (https://ss64.com/nt/ipconfig.html)

= ipconfig at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows
-commands/ipconfig)

LABEL

Adds, sets or removes a disk label.
Links:

= |abel at ss64.com (https://ss64.com/nt/label.html)

= |abel at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/label)

MAKECAB

Places files into compressed .cab cabinet file. See also # EXPAND.
Links:

= makecab at ss64.com (https://ss64.com/nt/makecab.html)

= makecab at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/makecab)

MODE

A multi-purpose command to display device status, configure ports and devices, and more.
Examples:

= mode

= Qutputs status and configuration of all devices, such as com3 and con.
mode con

= Qutputs status and configuration of con device, the console in which the command
interpreter is running.

mode con cols=120 lines=20

= Sets the number of columns and lines for the current console, resulting in window resizing,
and clears the screen. The setting does not affect new console instances. Keywords: wide
screen, wide window, screen size, window size, resize screen, resize window.

mode 120, 20

= As above: Sets the number of columns (120) and lines (20), resulting in window resizing,
and clears the screen.

mode con cols=120

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 61/73

https://ss64.com/nt/ipconfig.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ipconfig
https://ss64.com/nt/label.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/label
https://ss64.com/nt/makecab.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/makecab

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Sets the number of columns for the current console, resulting in window resizing, and
clears the screen. It seems to change the number of visible lines as well, but the total lines
count of the console buffer seems unchanged.

= mode 120

= As above: Sets the number of columns.
= mode con cp

= Qutputs the current code page of the console.
= mode con cp select=850

= Sets the current code page of the console. For a list of code pages, see the linked
Microsoft documentation below.

= mode con rate=31 delay=1

= Sets the rate and delay for repeated entry of a character while a key is held pressed, of the
console. The lower the rate, the fewer repetitions per second.

Links:

= mode at ss64.com (https://ss64.com/nt/mode.html)

= mode at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/mode)

MORE

Displays the contents of a file or files, one screen at a time. When redirected to a file, performs
some conversions, also depending on the used switches.

Examples:

= more Test.txt
= more *.txt
= grep -i sought.*string Source.txt | more /p >Out.txt

= Taking the output of a non-Windows grep command that produces line breaks consisting
solely of LF character without CR character, converts LF line breaks to CR-LF line breaks.
CR-LF newlines are also known as DOS line breaks, Windows line breaks, DOS newlines,
Windows newlines, and CR/LF line endings,as opposed to LF line breaks used by some
other operating systems.

= |n some setups, seems to output gibberish if the input contains LF line breaks and tab
characters at the same time.

= In some setups, for the conversion, /p may be unneeded. Thus, "more" would convert the
line breaks even without /p.

= more /t4 Source.txt >Target.txt

= Converts tab characters to 4 spaces.

= In some setups, tab conversion takes place automatically, even without the /t switch. If so,
it is per default to 8 spaces.

Switch /e:

= The online documentation for "more" in Windows XP and Windows Vista does not mention the
switch.

= The switch /e is mentioned in "more /?" at least in Windows XP and Windows Vista.
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 62/73

https://ss64.com/nt/mode.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mode

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Per "more /?", the switch is supposed to enable extended features listed at the end of "more
/?" help such as showing the current row on pressing "=". However, in Windows XP and
Windows Vista, that seems to be enabled by default even without /e.

= Hypothesis: In Windows XP and Windows Vista, /e does not do anything; it is present for
compatibility reasons.

Links:

= more at ss64.com (https://ss64.com/nt/more.html)

= more at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
xp/bb490933%28v%3dtechnet.10%29), Windows XP

= more at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/more), Windows Server 2008, Windows Vista

NET

Provides various network services, depending on the command used. Available variants per
command:

= net accounts
= net computer
= net config

= net continue
= net file

= net group

= net help

= net helpmsg
= net localgroup
= net name

= net pause

= net print

= net send

= net session
= net share

= net start

= net statistics
= net stop

= nettime

= net use

= net user

= net view

Links:

= net at ss64.com (https://ss64.com/nt/net.html)

= net services overview at Microsoft (https://docs.microsoft.com/en-us/previous-versions/window
s/it-pro/windows-xp/bb490948%28v%3dtechnet.10%29), Windows XP

= net computer at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-p
ro/windows-server-2012-R2-and-2012/cc730899%28v%3dws.11%29)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 63/73

https://ss64.com/nt/more.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490933%28v%3dtechnet.10%29
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/more
https://ss64.com/nt/net.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490948%28v%3dtechnet.10%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc730899%28v%3dws.11%29

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= net group at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windowsl/it-pro/
windows-server-2012-R2-and-2012/cc754051%28v%3dws.11%29)

= net localgroup at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2012-R2-and-2012/cc725622%28v%3dws.11%29)

= net print at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/wind
ows-commands/net-print)

= net session at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pr
o/windows-server-2012-R2-and-2012/hh750729%28v%3dws.11%29)

= net share at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/
windows-server-2012-R2-and-2012/hh750728%28v%3dws.11%29)

= net use at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/win
dows-server-2012-R2-and-2012/9g651155%28v%3dws.11%29)

= net user at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/wi
ndows-server-2012-R2-and-2012/cc771865%28v%3dws.11%29)

= net view at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/wi
ndows-server-2012-R2-and-2012/hh875576%28v%3dws.11%29)

OPENFILES

Performs actions pertaining to open files, especially those opened by other users over the network.
The actions involve querying, displaying, and disconnecting. For more, type "openfiles /?".

Links:

= openfiles at ss64.com (https://ss64.com/nt/openfiles.html)

= openfiles at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/openfiles)

PING

Syntax:

= PING /?
= PING address
= PING hostname

Send ICMP/IP "echo" packets over the network to the designated address (or the first IP address
that the designated hostname maps to via name lookup) and print all responses received.

Examples:

= ping en.wikibooks.org
= ping 91.198.174.192
= ping http://en.wikibooks.org/

= Does not work.

Links:

= ping at ss64.com (https://ss64.com/nt/ping.html)

= ping at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/ping)

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 64/73

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc754051%28v%3dws.11%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc725622%28v%3dws.11%29
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/net-print
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh750729%28v%3dws.11%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh750728%28v%3dws.11%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/gg651155%28v%3dws.11%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc771865%28v%3dws.11%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh875576%28v%3dws.11%29
https://ss64.com/nt/openfiles.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/openfiles
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://ss64.com/nt/ping.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ping

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

RECOVER

Recovers as much information as it can from damaged files on a defective disk.
Links:

= recover at ss64.com (https://ss64.com/nt/recover.html)

= recover at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/recover)

REG

Queries or modifies Windows registry.

The first argument is one of the following commands: query, add, delete, copy, save, load, unload,
restore, compare, export, import, and flags. To learn more about a command, follow it by /?, like

reg query /?.
Links:

= reg at ss64.com (https://ss64.com/nt/reg.html)

= reg at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-com
mands/req)

REPLACE
Replaces files in the destination folder with same-named files in the source folder.
Links:

= replace at ss64.com (https://ss64.com/nt/replace.html)

= replace at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/replace)

ROBOCOPY
(Not in XP) Copies files and folders. See also XCOPY and COPY.

Examples:

= robocopy /s C:\Windows\system C:\Windows-2\system *.dll

= Copies all files ending in .dll from one directory to another, replicating the nested directory
structure.

Links:

= robocopy at ss64.com (https://ss64.com/nt/robocopy.html)

= robocopy at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/robocopy)

RUNDLL32

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 65/73

https://ss64.com/nt/recover.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/recover
https://ss64.com/nt/reg.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/reg
https://ss64.com/nt/replace.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/replace
https://ss64.com/nt/robocopy.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Runs a function available from a DLL. The available DLLs and their functions differ among
Windows versions.

Examples:

= rundl32 sysdm.cpl,EditEnvironmentVariables

= In some Windows versions, opens the dialog for editing environment variables.

Links:

= rundll32 at ss64.com (https://ss64.com/nt/rundlI32.html)

= at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-comma
nds/rundll32)

= rundll (http://www.robvanderwoude.com/rundll.php) at robvanderwoude.com
= dx21.com (http://dx21.com/coding/libraries/rundll32/default.aspx) - lists rundll32 examples

SC

Controls Windows services, supporting starting, stopping, querying and more. Windows services
are process-like things. A Windows service is either hosted in its own process or it is hosted in an
instance of svchost.exe process, often with multiple services in the same instance. Processor time
use of a particular service can be found using freely downloadable Process Explorer from
Sysinternals, by going to properties of a service and then Threads tab. Another command capable
of controlling services is NET. TASKLIST can list hosted services using /svc switch.

Examples:

sc start wuauserv

= Starts wuauserv service.
= sc stop wuauserv
= SC query wuauserv
= SC query
= Qutputs information about all services.
= sc config SysMain start= disabled
= Make sure SysMain service is disabled after start. SysMain is the SuperFetch service,
causing repeated harddrive activity by trying to guess which programs to load into RAM in

case they will be used, and loading them. Notice the mandatory lack of space before = and
the mandatory space after =.

Links:

= sc at ss64.com (https://ss64.com/nt/sc.html)
= Windows 7 Services at ss64.com (https://ss64.com/nt/syntax-services.html)

= sc at Microsoft (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-se
rver-2012-R2-and-2012/cc754599%28v%3dws.11%29)

SCHTASKS

Schedules a program to be run at a certain time, more powerful than AT.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 66/73

https://ss64.com/nt/rundll32.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32
http://www.robvanderwoude.com/rundll.php
http://dx21.com/coding/libraries/rundll32/default.aspx
https://ss64.com/nt/sc.html
https://ss64.com/nt/syntax-services.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc754599%28v%3dws.11%29

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Links:

» schtasks at ss64.com (https://ss64.com/nt/schtasks.html)

= schtasks at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/window
s-commands/schtasks)

SETX

Like SET, but affecting the whole machine rather than the current console or process. Not
available in Windows XP; available in Windows Vista and later.

Links:

= setx at ss64.com (https://ss64.com/nt/setx.html)

= setx at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/setx), Windows Server 2008, Windows Vista

SHUTDOWN

Shuts down a computer, or logs off the current user.
Examples:

= shutdown /s

= Shuts down the computer.
= shutdown /s /t 0

= Shuts down the computer with zero delay.
= shutdown /|

= Logs off the current user.
Links:

= shutdown at ss64.com (https://ss64.com/nt/shutdown.html)

= shutdown at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windo
ws-commands/shutdown)

SORT

Sorts alphabetically, from A to Z or Z to A, case insensitive. Cannot sort numerically: if the input

"n_n

contains one integer per line, "12" comes before "9".
Examples:

= sort File.txt

= Qutputs the sorted content of File.txt.
= sort /r File.txt

= Sorts in reverse order, Z to A.
= dir /b | sort

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 67/73

https://ss64.com/nt/schtasks.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/schtasks
https://ss64.com/nt/setx.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://ss64.com/nt/shutdown.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shutdown

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Links:

= sort at ss64.com (https://ss64.com/nt/sort.html)

= sort at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/sort)

SUBST

Assigns a drive letter to a local folder, displays current assignments, or removes an assignment.
Examples:

= substp:.

= Assigns p: to the current folder.
= subst

= Shows all assignments previously made using subst.
= subst/d p:

= Removes p: assignment.

Links:

= subst at ss64.com (https://ss64.com/nt/subst.html)

= subst at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/subst)

SYSTEMINFO

Shows configuration of a computer and its operating system.
Links:

= systeminfo at ss64.com (https://ss64.com/nt/systeminfo.html)

= systeminfo at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windo
ws-commands/systeminfo)

TASKKILL

Ends one or more tasks.
Examples:

= taskkill /im AcroRd32.exe

= Ends all process with the name "AcroRd32.exe"; thus, ends all open instances of Acrobat
Reader. The name can be found using tasklist.

» taskkill /f /im AcroRd32.exe

= As above, but forced. Succeeds in ending some processes that do not get ended without /f.
= tasklist | find "notepad"

taskkill /PID 5792
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 68/73

https://ss64.com/nt/sort.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/sort
https://ss64.com/nt/subst.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/subst
https://ss64.com/nt/systeminfo.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Ends the process AKA task with process ID (PID) of 5792; the assumption is you have
found the PID using tasklist.

Links:

= taskkill at ss64.com (https://ss64.com/nt/taskkill.html)

= taskkill at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/taskkill)

TASKLIST

Lists tasks, including task name and process id (PID).

Examples:

tasklist | sort
tasklist | find "AcroRd"
tasklist | find /C "chrome.exe"

= Displays the number of tasks named "chrome.exe", belonging to Google Chrome browser.
tasklist /svc | findstr svchost

= Qutputs Windows services hosted in svchost.exe processes alongside the usual
information abot the process.

Links:

= tasklist at ss64.com (https://ss64.com/nt/tasklist.html)

= tasklist at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/tasklist)

TIMEOUT

Waits a specified number of seconds, displaying the number of remaining seconds as time passes,
allowing the user to interrupt the waiting by pressing a key. Also known as delay or sleep. Available
in Windows Vista and later.

Examples:

= timeout /t 5

= Waits for five seconds, allowing the user to cancel the waiting by pressing a key.
= timeout /t 5 /nobreak

= Waits for five seconds, ignoring user input other than Control + C.
= timeout /t 5 /nobreak >nul

= As above, but with no output.

Workaround in Windows XP:

= ping -n 6 127.0.0.1 >nul

= Waits for five seconds; the number after -n is the number of seconds to wait plus 1.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 69/73

https://ss64.com/nt/taskkill.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/taskkill
https://ss64.com/nt/tasklist.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tasklist

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
Perl-based workaround in Windows XP, requiring Perl installed:

= perl -e "sleep 5"

= Waits for 5 seconds.
Links:

= timeout at ss64.com (https://ss64.com/nt/timeout.html)

= timeout at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/timeout_1)

= How to wait in a batch script? (http://stackoverflow.com/questions/735285/how-to-wait-in-a-bat
ch-script) at stackoverflow.com

= Sleeping in a batch file (http://stackoverflow.com/questions/166044/sleeping-in-a-batch-file) at
stackoverflow.com

TREE

Displays a tree of all subdirectories of the current directory to any level of recursion or depth. If
used with /F switch, displays not only subdirectories but also files.

Examples:

s free
= tree /f

= Includes files in the listing, in addition to directories.
= tree /f/a

= As above, but uses 7-bit ASCII characters including "+", "-" and \" to draw the tree.

A snippet of a tree using 8-bit ASCII characters:

--

i I—winevt
L | f—Loes

E | L—TraceFormat
i F—winrm

__

--

+---winevt
1
' | +---Logs
| \---TraceFormat
+

__

= tree at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/tree)

WHERE

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 70/73

https://ss64.com/nt/timeout.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/timeout_1
http://stackoverflow.com/questions/735285/how-to-wait-in-a-batch-script
http://stackoverflow.com/questions/166044/sleeping-in-a-batch-file
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tree

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

Outputs one or more locations of a file or a file name pattern, where the file or pattern does not
need to state the extension if it listed in PATHEXT, such as .exe. Searches in the current directory
and in the PATH by default. Does some of the job of "which" command of some other operating
systems, but is more flexible.

Available on Windows 2003, Windows Vista, Windows 7, and later; not available on Windows XP.
An alternative to be used with Windows XP is in the examples below.

Does not find internal commands, as there are no dot exe files for them to match.
Examples:

= where find

= Qutputs the location of the find command, possibly "C:\Windows\System32\find.exe". The
.exe extension does not need to be specified as long as it is listed in PATHEXT, which it is
by default.

= [f there are more find commands in the path, outputs paths to both. In some situations, it
can output the following:

C:\Windows\System32\find.exe
C:\Program Files\GnuWin32\bin\find.exe

= for %i in (find.exe) do @echo %~$PATH:i
= Qutputs the location of "find.exe" on Windows XP. The name has to include ".exe", unlike
with the where command.
= where /r . Tasks*
= Searches for files whose name matches "Task™" recursively from the current folder. Similar
to "dir /b /s Tasks™". The /r switch disables search in the folders in PATH.
= where *.bat
= Outputs all .bat files in the current directory and in the directories that are in PATH. Thus,
outputs all .bat files that you can run without entering their full path.
= where Is*.bat

= As above, constraining also the beginning of the name of the .bat files.
= where Is*
= As above, but with no constraint on the extension. Finds Isdisks.bat, Ismice.pl, and
Ismnts.py if in the current directory or in the path.
= where *.exe *.com | more
= Displays countless .exe and .com files in the path and in the current folder, including those
in C:\Windows\System32.
= where $path:*.bat
= Outputs .bat files in the path but not those in the current folder unless the current folder is

in PATH. Instead of path, another environment variable containing a list of directories can
be used.

= where $windir:*.exe

= Qutputs .exe files found in the folder stated in WINDIR environment variable.
= where $path:*.bat $windir:*.exe

= A combination is possible. Outputs all files matching either of the two queries.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 7173

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world
= where /q *.bat && echo Found

= Suppresses both standard and error output, but sets the error level, enabling testing on it.
The error level is set either way, with or without /q.

Links:

= where at ss64.com (https://ss64.com/nt/where.html)

= where at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/where 1)

= |s there an equivalent of 'which' on windows? (http://stackoverflow.com/questions/304319/is-th
ere-an-equivalent-of-which-on-windows)

WMIC

Starts Windows Management Instrumentation Command-line (WMIC), or with arguments given,
passes the arguments as commands to WMIC. Not in Windows XP Home. For more, type "wmic

/?" .
Examples:

= wmic logicaldisk get caption,description
= Lists drives (disks) accessible under a drive letter, whether local hard drives, CD-ROM
drives, removable flash drives, network drives or drives created using #SUBST.
= wWmic
Control + C

= Enters wmic and then interrupts it. A side effect is that the console buffer becomes very
wide, and the screen becomes horizontally resizable with the mouse as a consequence.
This is the result of wmic setting a high number of columns of the console, which you can
verify using mode con. You can achieve a similar result by typing mode 1500. See also
#MODE.

= wmic datafile where name="C:\\Windows\\System32\\cmd.exe" get Version /value

= Qutputs the version of the cmd.exe, which should be close to the Windows version.

Links:

= wmic at ss64.com (https://ss64.com/nt/wmic.html)

= wmic at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-co
mmands/wmic)

XCOPY

Copies files and directories in a more advanced way than COPY, deprecated in Windows Vista and
later in favor of ROBOCOPY. Type xcopy /? to learn more, including countless options.

Examples:

= xcopy C:\Windows\system
= Copies all files, but not files in nested folders, from the source folder
("C:\Windows\system") to the current folder.

= xcopy /s /i C:\\Windows\system C:\Windows-2\system
https://en.wikibooks.org/wiki/Windows_Batch_Scripting 7273

https://ss64.com/nt/where.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/where_1
http://stackoverflow.com/questions/304319/is-there-an-equivalent-of-which-on-windows
https://ss64.com/nt/wmic.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/wmic

25.12.21, 05:53 Windows Batch Scripting - Wikibooks, open books for an open world

= Copies all files and folders to any nesting depth (via "/s") from the source folder
("C:\Windows\system") to "C:\Windows-2\system", creating "Windows-2\system" if it does
not exist (via "/i").

= xcopy /s /i /d:09-01-2014 C:\Windows\system C:\Windows-2\system
= As above, but copies only files changed on 1 September 2014 or later. Notice the use of
the month-first convention even if you are on a non-US locale of Windows.
= xcopy /L /s /i /d:09-01-2014 C:\Windows\system C:\Windows-2\system
= As above, but in a test mode via /L (list-only, output-only, display-only). Thus, does not do
any actual copying, merely lists what would be copied.
= xcopy /s /i C:\\Windows\system*.dll C:\Windows-2\system

= As one of the examples above, but copies only files ending in .dll, including those in nested
folders.

Links:

= Xxcopy at ss64.com (https://ss64.com/nt/xcopy.html)

= xcopy at Microsoft (https://docs.microsoft.com/en-us/windows-server/administration/windows-c
ommands/xcopy)

External links

= Windows XP - Command-line reference A-Z (https://docs.microsoft.com/en-us/previous-versio
ns/windows/it-pro/windows-xp/bb490890%28v%3dtechnet.10%29) at microsoft.com

= Windows Server 2008R2 - Command-Line Reference (https://docs.microsoft.com/en-us/previo
us-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754340(v=ws.10)) at
microsoft.com

= Windows Server 2012R2 - Command-Line Reference (https://docs.microsoft.com/en-us/previo
us-versions/windowsl/it-pro/windows-server-2012-R2-and-2012/cc754340%28v%3dws.11%29)
at microsoft.com

= Windows Server 2016 - Windows Commands (https://docs.microsoft.com/en-us/windows-serv
er/administration/windows-commands/windows-commands) at microsoft.com

= Windows CMD Commands at ss64.com (https://ss64.com/nt/) -- licensed under Creative
Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales[1] (https://ss64.c
om/docs/copyright.html), and thus incompatible with CC-BY-SA used by Wikibooks

= The FreeDOS HTML Help (http://help.fdos.org/en/index.htm) at fdos.org (http://fdos.org/) -- a
hypertext help system for FreeDOS commands, written in 2003/2004, available under the GNU
Free Documentation License

= Category:Batch File (https://rosettacode.org/wiki/Category:Batch_File), rosettacode.org

Retrieved from "https://en.wikibooks.org/w/index.php?titte=Windows_Batch_Scripting&oldid=3997425"

This page was last edited on 20 October 2021, at 16:57.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy.

https://en.wikibooks.org/wiki/Windows_Batch_Scripting 73173

https://ss64.com/nt/xcopy.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/xcopy
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490890%28v%3dtechnet.10%29
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754340(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc754340%28v%3dws.11%29
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://ss64.com/nt/
https://ss64.com/docs/copyright.html
http://help.fdos.org/en/index.htm
http://fdos.org/
https://en.wikibooks.org/wiki/GNU_Free_Documentation_License
https://rosettacode.org/wiki/Category:Batch_File
https://en.wikibooks.org/w/index.php?title=Windows_Batch_Scripting&oldid=3997425
https://creativecommons.org/licenses/by-sa/3.0/
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy

